
  

Springer Theses
Recognizing Outstanding Ph.D. Research

Metastable Glassy 
States Under External 
Perturbations
Monitoring the Effects of 
Compression and Shear-Strain

Corrado Rainone



Springer Theses

Recognizing Outstanding Ph.D. Research



Aims and Scope

The series “Springer Theses” brings together a selection of the very best Ph.D.
theses from around the world and across the physical sciences. Nominated and
endorsed by two recognized specialists, each published volume has been selected
for its scientific excellence and the high impact of its contents for the pertinent field
of research. For greater accessibility to non-specialists, the published versions
include an extended introduction, as well as a foreword by the student’s supervisor
explaining the special relevance of the work for the field. As a whole, the series will
provide a valuable resource both for newcomers to the research fields described,
and for other scientists seeking detailed background information on special
questions. Finally, it provides an accredited documentation of the valuable
contributions made by today’s younger generation of scientists.

Theses are accepted into the series by invited nomination only
and must fulfill all of the following criteria

• They must be written in good English.
• The topic should fall within the confines of Chemistry, Physics, Earth Sciences,

Engineering and related interdisciplinary fields such as Materials, Nanoscience,
Chemical Engineering, Complex Systems and Biophysics.

• The work reported in the thesis must represent a significant scientific advance.
• If the thesis includes previously published material, permission to reproduce this

must be gained from the respective copyright holder.
• They must have been examined and passed during the 12 months prior to

nomination.
• Each thesis should include a foreword by the supervisor outlining the signifi-

cance of its content.
• The theses should have a clearly defined structure including an introduction

accessible to scientists not expert in that particular field.

More information about this series at http://www.springer.com/series/8790



Corrado Rainone

Metastable Glassy States
Under External Perturbations
Monitoring the Effects of Compression
and Shear-Strain

Doctoral Thesis accepted by
Sapienza University of Rome, Italy

123



Author
Dr. Corrado Rainone
Department of Chemical Physics
The Weizmann Institute of Science
Rehovot
Israel

Supervisors
Prof. Giorgio Parisi
Department of Physics
Sapienza University of Rome
Rome
Italy

Dr. Francesco Zamponi
Laboratoire de Physique Théorique
École Normale Supérieure
Paris
France

ISSN 2190-5053 ISSN 2190-5061 (electronic)
Springer Theses
ISBN 978-3-319-60422-0 ISBN 978-3-319-60423-7 (eBook)
DOI 10.1007/978-3-319-60423-7

Library of Congress Control Number: 2017943192

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Alla mia famiglia,
e ai miei amici a Roma, a Parigi,
e ovunque altro li porterà la vita.



Supervisor’s Foreword

Since its first conceptualization at the hands of Boltzmann at the end of the 19th
century, statistical mechanics can be, as of today, considered a rather mature branch
of theoretical physics. Its most well-known and remarkable success story is without
much doubt the theoretical framework that it provides for the description of
second-order phase transitions, whose foremost and most pedagogical examples are
the ferromagnetic transition in magnetic systems and the liquid-gas transition in
particle systems.

Thanks to statistical mechanics, we are today equipped with a set of theoretical
pictures and tools which provide a full understanding of the phenomena which
underlie the physics of those systems, on both quantitative and qualitative level. We
now know that all these critical phenomena can be understood in terms of a
competition between order-inducing potential energy and disorder-inducing
entropy; we are able to compute, say, the critical exponent which characterizes
the critical behavior of the specific heat of a ferromagnet approaching the Curie
point down to three digits of accuracy, getting a result in agreement with even the
most accurate experiments; and thanks to the remarkable property of universality,
with its theoretical justification provided by the theory of critical phenomena, we
know that the results so obtained will be valid for all the systems which happen to
share the same universality class.

The tools and concepts, which have enabled us scientists to obtain this cornu-
copia of results, from mean-field theory, to the concept of spontaneous symmetry
breaking, to the renormalization group, have been proven useful in (and in some
cases, fundamental to) other branches of physics, such as the Standard Model of
fundamental interactions, and today constitute the bulk of any graduate school-level
curriculum in theoretical physics.

In summary, statistical mechanics has today reached paradigmatic status. Yet,
despite this success, there is still a large class of systems and phenomena whose
description in terms of a statistical mechanical treatment is not only lacking today,
but doesn’t even look forthcoming in the future: we are talking, using perhaps a too
much vague terminology, about disordered systems.

vii



A paradigmatic example of such a system is a disordered ferromagnet, wherein
the interaction between magnetic dipoles fluctuates randomly in space instead of
being a constant, as it is the case for an ordinary ferromagnet; another example is
provided by structural glasses, wherein particles are frozen in a solid-like manner
around an amorphous structure which lacks the long-range order of a crystalline
solid. Despite these last two cases being the most well-known, more examples
could be mentioned, including disordered quantum systems.

The presence of disorder throws off almost all of the conceptual pillars which we
are used to rely on. The presence of disorder makes it impossible to discern a clear
pattern of symmetry breaking; the disordered nature of the coupling constants
means that implementing usual renormalization group techniques is but a futile
endeavor; the lack of long-range order makes ordinary correlation functions a
completely useless tool when it comes to studying critical properties and, perhaps
most importantly, all those disordered systems share the cardinal feature of reaching
an equilibrium state very slowly, on timescales which are comparable or larger than
the typical experimental times, while the most basic assumptions at the heart of
statistical mechanics rely on equilibration and ergodicity as the two main justifi-
cations for introducing a description of an evolving system in terms of a statistical
ensemble.

In summary, these systems pose challenges which go much beyond mere
(however undoubtedly difficult) technical issues, but concern the very nature and
fundamental concepts and assumptions of statistical mechanics, and sit at the
cutting-edge of the research effort in the field.

As I said above, a full framework for the description of disordered systems and
their phase transitions is not a reality as of today. However, success stories and
viable proposals do exist. One of these is the theory of mean-field spin glasses (i.e.
ferromagnets with strong disorder) based on the method of replicas and the concept
of replica symmetry breaking.

The main merit of this framework lies in the fact that it is able to bring back the
basic concepts of spontaneous symmetry breaking, order parameters, and correla-
tion functions, in a setting wherein they had apparently been made unviable or
useless by the presence of disorder; this makes it again possible, for example, to
write a field theory à la Landau which is in principle amenable to a renormalization
group kind of approach.

Another merit is how it has shown a degree of universality which seems to be
comparable to the one attained by the theory of ordinary critical phenomena: a
conjecture formulated in the late eighties by Kirkpatrick, Thirumalai and Wolynes
asserts that the methods and concepts of Replica Theory employed in the treatment
of spin glasses are also relevant for the physics of structural glasses, somewhat
echoing the shared universality of the ferromagnetic and liquid-gas transitions; this
set of conjectures and ideas later coalesced in what is today referred to as the
Random First Order Theory (RFOT) of the glass transition.

As of today, we know for a fact that at mean-field level the conjecture is correct.
However, the accomplishment of proving its worth out of that setting has not yet
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been achieved and today constitutes one of the most extensive and prolific
endeavors in this field of research.

Dr. Rainone’s thesis is part of this endeavor. In particular, it deals with one of the
basic problems enunciated above, namely the one of slow relaxation and conse-
quent metastability of structural glasses when looked at on typical experimental
timescales.

As said above, this intrinsically jeopardizes the very possibility of a statistical
mechanical description; the thesis shows how this difficulty can be worked around
using the theory or replicas and how it can be applied, if only at mean-field level, to
a realistic and canonical model of glass former, enabling us to reproduce known
observations about metastable glasses and to formulate new predictions about their
nature. The theory derived is fully analytic, going all the way from the mathe-
matical model to tangible physical observables such as equations of state and
stress–strain curves, from the microscopic to the macroscopic, in a true statistical
mechanical fashion, applied here for the first time to amorphous systems out of
equilibrium.

The predictions summarized in this thesis are already contributing to setting the
course for future research in the field, and some of them have been already verified
in numerical settings. The thesis is written in a pedagogical manner, wherein all the
conceptual links and passages are thoroughly justified and explained, and calcu-
lations are reported step by step; it contains an extensive introduction to funda-
mentals the glass problem and the theories put forward so far to explain it, not only
RFOT. It will, therefore, be a useful read for students willing to approach the
problem for the first time, and who will therefore be in need of understanding both
the numerous phenomenological facets of the glass problem and the physics of
disordered systems, and the (sometimes obscure) mathematical and conceptual
subtleties of the replica method.

This thesis is, therefore, a piece of work which combines the performance and
report of cutting-edge research with a textbook-like level of pedagogy, which I
believe will make it interesting to a vast public including both veteran researchers
and new students willing to enter the field.

June 2017 Prof. Giorgio Parisi
Dipartimento di Fisica,

Sapienza Università di Roma,
Roma, Italy
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Abstract

This thesis sums up the research work I performed as a Ph.D. student in Sapienza
Università di Roma, and École Normale Supérieure, Paris, under the joint super-
vision of Prof. Giorgio Parisi and Dr. Francesco Zamponi. The thesis focuses on the
theoretical study of metastable glasses prepared through non-equilibrium protocols.

The book is organized as follows: in Chap. 1, we give a general introduction on
the problem and delineate our aims, along with an exposition of the fundamental
phenomenological features of the glass problem (with emphasis on the central
phenomenon of the glassy slowdown) whose reproduction is a minimal requirement
for any theory of the glass transition. In Chap. 2, we give the fundamentals of one
such theory, the Random First Order Theory (RFOT) which constitutes the central
conceptual pillar of the present work, with emphasis on the concept of metastable
state which will be pivotal in the following; in Chap. 3, we review the phe-
nomenology of glasses as measured in experiments and simulations, in particular
differential scanning calorimetry and quasi-static shear strain deformation, corre-
sponding to adiabatic changes of the temperature T and of the strain parameter c,
respectively; in Chap. 4 we present and review in detail the state following con-
struction, along with some of the other tools which can be used within RFOT to
approach the problem of metastability in general; in Chap. 5 we perform the state
following computation for the HS model in the mean-field limit, assuming the
simplest possible structure for a glassy minimum (i.e. a simple paraboloid), and
present the results so obtained; in Chap. 6 we dispense with this last assumption and
perform a more general computation for a arbitrarily complicated structure of the
glassy minima, and present the results so obtained; in Chap. 7 we provide some
comparison with numerics in a simple, modified HS model which allows for a
simple analytical treatment and is also very easy to simulate; finally, in Chap. 8, we
summarize our conclusions and provide some suggestion for further research in the
field of glass physics.

The results presented in this thesis have been already published in journal
articles, but here we present them in a coherent and self-contained manner. We refer
the interested reader to:
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• Chapter 5: C. Rainone, P. Urbani, H. Yoshino, F. Zamponi, “Following the
Evolution of Hard Sphere Glasses in Infinite Dimensions under External
Perturbations: Compression and Shear Strain”, Phys. Rev. Lett. 2015, 114,
015701, DOI 10.1103/PhysRevLett.114.015701.

• Chapter 6: C. Rainone, P. Urbani, “Following the evolution of glassy states
under external perturbations: the full replica symmetry breaking solution”,
Journal of Statistical Mechanics: Theory and Experiment 2016, 2016, 053302.

• Chapter 7: M. S. Mariani, G. Parisi, C. Rainone, “Calorimetric glass transition in
a mean-field theory approach”, Proceedings of the National Academy of
Sciences 2015, 112, 2361–2366, DOI 10.1073/pnas.1500125112; and
P. Charbonneau et al., “Numerical detection of the Gardner transition in a
mean-field glass former”, Phys. Rev. E 2015, 92, 012316, DOI 10.1103/
PhysRevE.92.012316.
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Chapter 1
Introduction

1.1 Equilibrium Supercooled Liquid Versus Metastable
Glasses

This thesis is about glass. As stupid as this assertion looks, it is indeed important to
state this fact loud and clear, at the very beginning.

Why is such an assertion necessary or even appropriate? The glass transition is one
of the great unresolved problems in condensed matter physics (as the introduction
of pretty much every work on the subject loves to remind) and it has been so for
decades. And for decades, research has been produced, and still is, to investigate its
nature. A thesis in the field of the physics of the glass transition which says about
itself “this thesis is about glass” is therefore stating an obvious tautology, at the very
best. The aim of this introduction is to have the reader understand that it is not so,
and that indeed the theoretical research on the properties of glasses (as opposed to
the huge amount of experimental and numerical work that has been done, and is still
being done) is a relatively new subject that we are beginning to explore now.

But a pressing question then arises:whatwere those “decades of research” referred
to above, about?The answer is: not glasses.Or rather, there has been, yes, a ponderous
amount of experimental research about glasses over the last decades (Tool’s works
about fictive temperature are an example), which we will reap and use in this thesis.
But the theoretical research, the research aiming to describe glass-related phenomena
at first principle level, has not been very concerned with glass itself. Rather, most of
the theoretical efforts carried out up to now are about supercooled liquids, that is,
about equilibrium properties of glass formers.

This distinction is very important, and yet oftentimes forgotten. Despite this, it is
indeed pretty obvious from an intuitive point of view. Every research article about
the glass transition will at some point or another contain a sentence of the sort “...it
is impossible to obtain data in this regime due to the extremely large time needed to
equilibrate the sample...”, and indeed, the reason why the glass problem is still open
lies mainly in the fact that data in the deeply supercooled regime are, to state it in an
unambiguous way, impossible to obtain. And yet, in everyday life, glasses are just
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everywhere and are indeed quite easy to manufacture; they are not a rare and exotic
commodity. But despite this, the impression that one gets from the literature is that
getting new data to better understand the glass problem is always sort of a struggle.

The distinction abovemakes it clearwhy:what researchers have been, and still are,
mostly concerned about is the supercooled liquid. And supercooled liquids, unlike
glasses, are indeed very rare and very valuable objects. It is indeed a fact that the
various theories about the glass transition that are on the table today (Random First
Order, Dynamic Facilitation, Frustration Limited Domains etc.) were conceived first
and foremost as theories about supercooled liquids rather than glasses, and their most
defining predictions concern the supercooled regime; this is the reason why it is into
that hard-to-reach regime that those much needed data are to be searched for. In such
a scenario, the glass is at best seen as an enemy (interestingly, much like the crystal)
who sneaks in during your simulation/experiment and ruins your day by pushing out
of equilibrium your precious supercooled liquid sample.

In this thesis, we are concerned with glasses.
The problem with formulating a theory about glass lies in the fact that a glass is

an intrinsically out of equilibrium object, as opposed to the supercooled liquid. This
simple fact is at the origin of all problems that are commonly encountered when
trying to conceive a theory of glasses. If the theorist is aiming for a first-principle
theory, then the obvious starting point is of course statistical mechanics, as in all
other branches of theoretical condensed matter physics. But statistical mechanics is
a framework mainly concerned with the properties of equilibrium systems, whose
thermodynamic state is stable, and whose lifetime is infinite. Glass has no such
property, as we enunciated before: its properties depend of the time t and a glass does
not live forever, but only until the glass former is able to relax and flow again like a
liquid. There are theoretical tools conceived for the treatment of out-of-equilibrium
scenarios, but they are all meant to deal with situations wherein the system is subject
to a drive of some sort (say, an AC current), and they are meant for systems with
long-range order. Glass is amorphous, and is out of equilibrium because it did not
have enough time to relax, not because we are perturbing it in some way. So those
tools are not suitable for our problem.

At this point, it looks like a meaningful theory of glass cannot make do without a
time-based description, a view which the Dynamical Facilitation Theory (DFT), for
example, embraces heartily; however, the dynamics of generic many-body systems,
and in particular glass formers, does not enjoy a unified and commonly accepted first-
principles framework such as the one that statistical mechanics is able to provide for
systems in thermodynamic equilibrium. We will see over the course of this thesis
that this weakness is manifest within DFT, whose models are necessarily phenom-
enological in nature and never start from a microscopic, first-principles description
of the glass-forming liquid. So, it looks like one is between the proverbial rock and
hard place: to have a first-principles theory, one must try to rely on dynamics; but
to rely on dynamics, the theoretician necessarily has to sacrifice something in terms
of microscopic description (like in DFT) or simplifying assumptions (like in Mode
Coupling Theory).
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However, if one actually looks at how the properties of a glass change over time
(for example, its internal energy U as a function of time, or any other convenient
observable), one can see that the dependence on t is actually pretty simple, i.e.
the dynamics looks like a quasi-equilibrium process wherein the observables of the
system remain stable over very long time periods, of the order of the impossibly long
equilibration time needed to observe the supercooled liquid. This picture of glass as
a system in quasi-equilibrium (or restricted equilibrium, as we will say more often)
is at the root of the Random First Order Theory (RFOT) of the glass transition that
this thesis is based on.

The RFOT posits that the glass transition is, yes, a dynamic phenomenon, but that
it has a static origin. This origin comes in the formof aFree Energy Landscape (FEL),
which is essentially a very rough landscape (think of a golf course, for example) of
valleys (minima) separated by ridges (saddles), wherein a single point, representing
the glass former, has to navigate towards the bottom of the lowest valley in order to
attain equilibration. The dynamics of the system then unfolds as a series of downhill
jumps over the ridges (an activation event) separated by long persistence timeswithin
the valleys (referred to as metastable states). The large times needed for activated
jumps to take place delay the onset of equilibration and cause the system to behave
in a “glassy” manner, and as a result of this, the persistence times are so large that
the system is effectively trapped (or equivalently, equilibrated) inside a metastable
state for all times which are relevant for experimental and practical purposes.

What is most important about the FEL is that it is a static object, in the sense
that it is uniquely determined by the equilibrium properties of the system, with no
dynamics or time in play. Despite the fact that it prominently affects the dynamics
of the glass former, it can be in principle studied with suitable static tools. This
scenario opens the possibility that the whole phenomenology of glass could be in
principle described by focusing on the study of the valleys (minima) that the system
is trapped into during the time regime before equilibration, when the glass exists.
In particular, since the system is equilibrated within a metastable state, one could in
principle construct a restricted thermodynamics by defining a Gibbs measure which
only accounts for the micro-configurations which are visited by the system as it
vibrates inside this single minimum. From such a measure one could then compute
a partition function, a thermodynamic potential, and finally, physical observables.

Such a construction is referred to as State Following constructionwithin the theory
of generic systems (not only structural glasses) with a rough FEL and a consequent
RFOT-like behavior. In this thesis we present and apply this construction to a realistic
model of glass former, namelyHardSpheres (HS).We showhow it allows to construct
a fully analytic theory of glass, entirely fromfirst principles,without the need to resort
to dynamical tools; we show how it allows to obtain results for physical observables
which are in agreement with the established phenomenology of glasses, and we show
how it is also able to provide new insights into, and predictions about, the nature of
the glass phase (Fig. 1.1).
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Fig. 1.1 The equations of state of a prototypical glass former. We can distinguish the crystalline
branch, the supercooled branch and, in color, the various metastable glass branches. As a guide,
in this thesis we will mainly focus on cooling protocols wherein one moves down the supercooled
branch and then into the glassy branches, down to T = 0. We will not be concerned with the deeply
supercooled branch (dashed line). Reprinted from [1]

1.2 The Glassy Slowdown

Most liquids (although not all of them [1]) crystallize upon cooling at a certain
melting temperature Tm (see Fig. 1.1). However, it is always possible, employing
some caution, to supercool a liquid below its melting point, avoiding crystallization
and producing a supercooled liquid.

There are multiple ways to accomplish this. In experiments and industrial appli-
cations, one usually cools the liquid fast enough that the nucleation and growth of
the crystal take place on times much longer that the experimental time texp at which
measurements are performed. In simulations, the crystal is usually “killed” by in-
troducing polydispersity, i.e. by considering a liquid whose constituents can have
different physical shapes (for example spheres with different diameters), so that an
ordered, crystalline arrangement of the particles is inhibited. We do not delve into
this issue and refer the reader to the detailed discussion of [1].

Once one has managed to obtain a supercooled liquid, it is possible to lower the
temperature further, always minding the possibility of crystallization. On doing so,
one can then observe a dramatic increase of the relaxation time (we denote it as τR)
(see Fig. 1.2) over a fairly short range of temperature. Besides this sharpness, this
sudden growth is also impressive for its generality: it manifests in systems that range
from atomic liquids, to molecular ones, to colloidal compounds and even metallic
alloys [2]: any liquid can form a glass if supercooled fast enough [3]. This is already a
hint to the fact that the glassy slowdown is a fairly general phenomenon, independent
of the actual nature of the glass former under consideration.

We remind the reader that the relaxation time can be defined in terms of the
viscosity by Maxwell’s relation [1, 4]
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Fig. 1.2 Angell’s plot. When the (T/Tg) ratio is reduced by just one half, the most fragile glass
formers show an increase of the viscosity (and thus the relaxation time) of almost 16 decades, and
the viscosity of the strongest ones increases anyway of about 10 decades. This stunningly sharp
growth is one of the most impressive phenomenons in all of low energy physics. Reprinted from [1]

η = G∞τR, (1.1)

(where G∞ is the infinite frequency shear modulus) so that the glass former becomes
more and more sluggish as the temperature is lowered. This relation is useful since it
allows us to pass from a subtle observable like τR to a much more tangible physical
property like the viscosity.

1.2.1 The Calorimetric Glass Transition

When the viscosity of a liquid is so high, its ability to flow is severely hampered: it
takes a time of order τR to relax any excitation (for example shear) the glass former is
submitted to. This means that on experimental timescales texp < τR the glass former
will effectually respond to an external perturbation as if it were an elastic solid, i.e.
it will present a shear stress proportional to the strain [4]

σ = G∞γ. (1.2)
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Indeed, if we simply define a solid as any substance that has an elastic response, the
glass former is effectively a solid on timescales such that texp < τR . We stress the fact
that this has absolutely nothing to do with the glass transition per se. The fact that
a liquid can respond to shear like a solid on short enough timescales is completely
general: solidity is indeed a timescale-dependent notion [5]. However, if we put this
together with the glassy slowdown, we see that the time we would have to wait to see
a liquid-like response to shear becomes rapidly so large that it becomes effectively
impossible to do so. When this happens, we get the calorimetric glass transition,
defined as the point where the equilibration time of the glass former becomes longer
than the experimental time, thereby making it a solid from the point of view of the
experimentalist. We have then the following implicit definition for the calorimetric
glass transition temperature Tg

τR(Tg) ≡ texp. (1.3)

This definition of Tg is the one we are going to follow in the rest of this thesis.
However, it can be immediately seen that this definition has a problem, namely the
fact the texp depends on how our particular experiment (i.e. our protocol) is designed.
It is actually more correct to talk about glass transition temperatures, with a plural;
but in order to establish a standard, the convention is to set texp to 102 (sometimes
103) seconds.1 This corresponds to having for the viscosity

η(Tg) � 1013 Poise, (1.4)

To put this number into perspective, water has a viscosity of about 0.01 Poise, and
honey’s is about between 20 and 100 Poise. A 10cm tall cup containing a liquid with
a viscosity of 1013 Poise would take about 30 years to empty itself [3], so this value
corresponds by all reasonable standards to a solid-like response.

The definition of Tg allows us to better appreciate the growth of τR at the onset of
the glassy slowdown.We can plot on a logarithmic scale the viscosity versus the ratio
T/Tg for various glass formers. What we get is the plot in Fig. 1.2, called Angell’s
plot [2]. From Angell’s plot we can clearly see that the growth of the viscosity (and
so of τR) is at least exponential in T , and for some glass formers is even sharper.
This is remarkable especially if one considers that the increase of the viscosity at the
melting point Tm is much milder [1].

The definition of the calorimetric glass transition also allows us to introduce
a problem which underlies the physics of glasses in general: namely the fact that
everything has to be defined in a very anthropocentric way. It is true, as discussed in
[1], that the increase of τR is so sharp that the actual value of texp doesn’t effectively
changematters. But this does not deny the fact that the only reason whywe talk about
a calorimetric glass transition lies in the fact that we are not patient (or long-lived, for
that matter) enough to observe the equilibration of the glass former below Tg . One

1Indeed, the increase of τR is so sharp that the actual choice of texp does not make much of a
difference.
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reason for the success of theRFOT theorywe are going to discuss lies in the fact that it
brings all this dynamical, time-based phenomenology back to a critical phenomenon
with a well defined transition temperature, which of course is very appealing to
physicists. Nowadays, the actual presence of an underlying critical phenomenon is
not perceived anymore as a necessity within RFOT (an avoided transition would be
just as good, as we are going to discuss), but it certainly contributed to shaping up
the debate in the early days.

Nevertheless, we must stress a point: the calorimetric glass transition is not a
transition, and the only relevant phenomenon is the increase of the relaxation time,
i.e. the glassy slowdown. This is why this section bears its title.

1.2.2 Fragility and the Vogel-Fulcher-Tammann Law

Let us go back to Angell’s plot, Fig. 1.2. As we already said, some glass formers have
an exponential increase of τR , while someothers have an even sharper behavior.When
we say “exponential”, we can’t help but immediately think about Arrhenius’ law

τ = τ0 exp

(
�

kB T

)
, (1.5)

which gives the time needed, for a system at temperature T , to overcome an energy
barrier of height �. The fact that the τR versus T dependence is well described by
Arrhenius’ law already points toward the fact that relaxation in supercooled liquids
must have something to do with barrier crossing. This is the first brick we need to
introduce the concept of metastable state.

Glass formers which have an Arrhenius-like behavior are referred to as strong
glass formers in glass physics. The champion of strong glass formers is undoubtedly
Silica (SiO2), namely the ordinarywindow glass. Conversely, those that have a super-
Arrhenius behavior are dubbed fragile glass formers. Examples of this class are
toluene and orto-terphenyl. We remark that the distinction between the two types
is not very clear-cut (in Fig. 1.2 we can see a variety of behaviors rather than two
sharply distinct classes), but it’s anyway useful.

Because Arrhenius’ law is not suitable for fragile glass formers, it is automatic to
ask how we could fit the τR(T ) dependence for fragile glasses. One possible answer
has been known, indeed, for quite a long time and is the Vogel-Fulcher-Tamman
(VFT) law [6–8]

η(T ) = η∞ exp

(
A

T − T0

)
. (1.6)

The VFT law is purely phenomenological in nature, nothing more than a fit law with
three parameters (τ0, A and T0) for viscosity data. However, it does a very good job
for a great variety of glass formers (see for example [9, 10] for systematic tests of
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its validity). We can also see that it gives back a pure Arrhenius’ law when T0 = 0,
so it also allows to interpolate nicely between fragile and strong behavior.

However, we immediately notice that the VFT law says something big: namely,
that the relaxation time diverges at a temperature T = T0. This is a very strong
statement, as a divergence of the relaxation time would imply that at T0 there is a
phase transition.Not a “calorimetric” transitionwith a conventional, blurry definition.
But a real critical phenomenonwith a real critical temperature. Such a statement cries
for an experimental, unambiguous validation.

Unfortunately, no such unambiguous validation exist. Although the good job done
by the VFT law makes it at least reasonable that a divergence exists (and in the
following we will provide some more arguments in support of its existence), we
must not forget that the VFT law is just a fit, meant to interpolate data. And below
Tg, by definition, there are no such data. If we follow the convention texp = 100s,
take for good the VFT law, and choose reasonably texp ≈ 1014τ0, A ≈ 10T0, we
can immediately see that one cannot approach the putative critical point more than
�T ≈ 1

3T0 without falling out of equilibrium first. So, since the VFT law is just a
fit, using it to predict a divergence located so far from the region where there are
any data to fit looks like an audacious over-stretching. As a matter of fact, choosing
the “best” fit is always a very messy affair. There are indeed alternative laws, like
Bässler’s law [11]

τR(T ) = τ0 exp

[
K

(
T ∗

T

)2
]

, (1.7)

which anyway does a comparably good job and contains no divergence whatsoever.
One could even argue that Arrhenius’ law is all we need, since even the η vs. T of the
most fragile glass formers is approximately a straight line if T is close enough to Tg,
which means that it can be fitted to an Arrhenius’ law if the range of temperatures is
small enough. And there is at least one experiment in the literature [12] wherein, after
producing very low-temperature supercooled liquid samples using new techniques,2

no super-Arrhenius behavior is actually observed at all.
In summary: extrapolations, however appealing they may appear, are insidious.

The presence or not of a divergence at T0 (see [13] for a very critical point of view)
remains a point of contention to this day.

1.2.3 Two-Step Relaxation

The growth of τR (or equivalently η) around and below Tg has up to now been
described with such adjectives as “dramatic”, “stunning”, and “impressive”, and one
can easily verify that the whole literature on the subject tends to use similarly grand
words when it comes to Angell’s plot.

2Namely, vapor deposition. We shall discuss it later when we introduce ultrastable glasses.
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Fig. 1.3 The static structure
factor of a Lennard-Jones
liquid for three different
temperatures in the
slowdown region. No
qualitative changes are
observed on lowering T .
Reprinted from [1]

When we consider something to be remarkable, it happens because it exceeds
our expectations. And when we talk about physical quantities, having an expectation
means having a scale, which in our case is texp. However, as we said before, texp is not
a fundamental scale in any way, but rather a totally anthropocentric and conventional
choice. If we were beings with a lifetime such that choosing a timescale of, say,
1013 seconds were reasonable, the growth of τR would certainly not have appeared
as impressive (unless we take a leap of faith and believe that a singularity is present
at T0), and from a qualitative point of view, a glass former would just appear to us
as a perfectly normal, flowing liquid. So it looks like the phenomenon of the glassy
slowdown looks exciting merely because we look at it with a built-in timescale that
the fundamental laws of nature do not share.3

This view seems to be corroborated by the fact that the sudden sluggishness does
not seem to be accompanied by any structural change whatsoever. If we look at the
structural properties of a glass former around Tg, usually through its static structure
factor S(q) [14], no relevant change with T is observed [1, 15] (as one can see in
Fig. 1.3), while its relaxation time grows of some 10 orders of magnitude in the same
temperature range: if we take a snapshot of a glass former near Tg, which is what the
S(q) does, it looks exactly like a liquid, with no long-range order or Bragg peaks.
This fact is dismaying from a physicist’s point of view, considering that the wisdom
from the theory of critical phenomena suggests that a long relaxation time always
comes together with a long correlation length (i.e. critical slowing down) [16]. It
looks more and more like the glass transition is a problem for chemists and material
scientists only, certainly not for physicists. In this paragraph we explain why it is not
so, by showing a qualitative fingerprint of glassiness: the two-step relaxation.

3My Bachelor’s thesis advisor was fond of saying “There only two numbers that matter in physics:
zero and one”. The reason for this is that we can always choose a scale for the phenomena in study
and use it to measure the quantities involved. This statement applies very well to Angell’s plot:
nothing forbids us to choose a scale such that η(T ) ≈ O(1) ∀T . And why should a constant curve
be of any interest for a physicist? From his point of view, literally nothing is going on, unless it
goes to zero or infinity somewhere.
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Let us consider a model glass former made of N particles. Let us also consider
a generic time-dependent observable Oi (t) relative to particle i . We can define a
dynamical correlation function

C(t, t ′) = 1

N

N∑
i=1

〈Oi (t)Oi (t
′)〉. (1.8)

where < • > denotes an average over the initial condition at t = 0. Let us focus
on liquids which are approaching the glass transition, but are still equilibrated. In
that case the average is carried out using the canonical distribution and the dynamics
depends only on the difference t−t ′. This is TimeTranslational Invariance (TTI) [17].

For particle glass formers the observable Oi (t) is usually the density fluctuation
(in Fourier space) relative to particle i

δρi (q, t) ≡
∫

dx e−iq·xδ(x − xi (t)) = e−iq·xi (t). (1.9)

With this choice, C(t, 0) coincides with the intermediate scattering function Fs(q, t)
usually measured in inelastic neutron scattering experiments [14].

Since to our knowledge the system has only one timescale τR , we would expect
for the correlation function a form such as

Fs(q, t) � e− t
τR . (1.10)

in principle different qs may correspond to different τRs, but the variations should
only amount to a trivial rescaling that leaves intact the VFT dependence on T . So we
expect a slower and slower, but nonetheless exponential decay on approaching Tg .

But this is not what is observed, see Fig. 1.4 and Ref. [18]. For high T , we get
the expected exponential relaxation. However, as we approach Tg we can see that
the correlator changes shape and the relaxation proceeds in two steps: firstly a fast

Fig. 1.4 The intermediate
scattering function obtained
from simulation data of a
Lennard-Jones liquid in the
vicinity of Tg . As the
temperature is lowered, two
distinct relaxations appear,
separated by a plateau of
rapidly growing length.
Reprinted from [1]
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relaxation (remember that we are watching things in logarithmic time) to a plateau
with a height C∗ different from zero takes place. This first part of the relaxation is
not very sensible to the onset of the glassy slowdown. Then, after another time which
grows sharply as the temperature is lowered, we get the final structural relaxation.
Fittingly, this pattern of decay is called two-step relaxation and unlike the simple
(however impressive) growth of τR , it is indeed a qualitative landmark of glassiness,
one that will stay there even if we change our choice of texp.

So, after all, we were wrong in assuming that the system has only one timescale.
Indeed, there are two of them, and only one of the two ultimately causes the slowdown
of the dynamics and the growth of τR . This means that inside our system there is
a well defined separation between fast processes, which yield the initial decay on
the plateau and are weakly dependent on T , and slow processes which are on the
contrary deeply affected by the onset of glassiness. The two different steps are called
β relaxation (for fast processes) and α relaxation (for slow ones), and each of the
two has its associated timescale, τβ and τα respectively. Since structural relaxation
is of course dominated by the slowest processes, we have

τR � τα, (1.11)

so that the α-relaxation timescale is the one relevant for equilibration.
The presence of two-step relaxation is our second (an perhaps most important)

building block towards the concept of metastable state: the presence of the two well-
separated relaxations, with a long, flat plateau in the middle, seems to suggest that a
glass can be thought of as a glass former which is partially equilibrated (β-relaxation
has taken place) but still has to undergo complete equilibration (α-relaxation), where-
upon it becomes a supercooled liquid again. This idea of restricted equilibrium is
the fundamental concept behind the State Following construction.

The presence of partial relaxation is also important for another reason: if the
relaxation were a simple (however slow) exponential with a single timescale, then
every measurement (even of just one-time observables like, say, the pressure) made
on a timescale texp � τα would have shown a dependence on t , thereby dooming
to fail any idea that glasses can be described by an equilibrium (i.e. with no de-
pendence on t) approach. The fact that the relaxation of the system is effectively
frozen on timescales as long as τα, however, saves us from this problem: there is,
of course, a dependence of even one-time observables on t (i.e. aging [1, 17]), but
we have to wait a very long time to observe it, and before that, one-time quantities
are effectively constant on timescales which are long, but anyway much shorter than
τα � τR [1, 19].

Now, we can finally be more specific in our glass-supercooled liquid distinction.
Fromnowon,whenwe talk about glass,wewillmean thatwe are looking at properties
of a glass former, below Tg , on a timescale such that

τβ � texp � τα, (1.12)
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which means that we are looking at the plateau regime. Supercooled liquid instead
means that we are looking at properties of a glass former when

texp � τα. (1.13)

Needless to say, and as we anticipated in the introduction, glasses are much easier
to look at.

1.2.4 Real Space: The Cage

How does the relaxation of a glass former actually look like? If we take a look at
the actual movement of the particles, in real space, during equilibration, what do we
see?

In the next twoparagraphswe answer this question. Let us define a newobservable,
the mean square displacement (MSD) of a tagged particle:

〈r2(t)〉 ≡ 1

N

N∑
i=1

〈|xi (t) − xi (0)|2〉, (1.14)

which measures how much a particle is able to move from its initial position as
time passes. We would expect, for short times, a ballistic regime where r2(t) � t2,
followed then by a diffusive regime [1, 20] with r2(t) � D t , where D is the diffusion
coefficient [1]. However, since we already know that structural relaxation takes place
in a two-step manner, we actually expect to see something more interesting.

And we are not disappointed, see Fig. 1.5. At high temperature, the expected
crossover from ballistic to diffusive behavior is observed. As the glassy slowdown
sets in, a plateau regime, in which particles cannot move, manifests between the bal-
listic and diffusive regimes, similarly to what happens for the intermediate scattering

Fig. 1.5 The MSD obtained
from simulation data of a
Lennard-Jones liquid in the
vicinity of Tg . At high
temperature, a crossover
from ballistic to diffusive
regime is observed. At the
onset of glassiness, a plateau
regime in which particles are
caged appears. Reprinted
from [1]



1.2 The Glassy Slowdown 13

Fig. 1.6 Specific heat at constant pressure of a prototypical glass former around the calorimetric
glass transition. The liquid has amuch higher cp , but a sharp drop to the crystalline value is observed
as the system becomes glassy. Reprinted from [1]

function, Fig. 1.4. Indeed, the timescale necessary to observe diffusion coincideswith
the α-relaxation time τα [21].

This provides a picture of two-step relaxation in real space: on a fast timescale τβ ,
the system undergoes an initial relaxation as particles move ballistically. After this,
the particles remain stuck for a long time and they ability to move is suppressed: this
is the cage effect [1, 20]. Particles cannot move away because they are confined by
their neighbors, and thus only vibrate (or rattle) inside their respective cages. These
vibrations are very small: the MSD in the plateau regime is in the range of 10−2 −
10−1 particle diameters, and the Lindermann ratio, than compares the amplitude of
vibrations with the intermolecular distance, is only about 10% in molecular glass
formers [22].

This is howaglass looks likewhen viewed in real space: a systemmade of particles
that only vibrate around equilibrium positions which have a disordered arrangement
in space [1, 3]. A glass is, indeed, an amorphous solid. It is solid because particles
are not free to move, but rather they can only vibrate around equilibrium positions,
like they would do in a crystal. But it is also amorphous because the equilibrium
positions have a disordered arrangement in space.

This picture is supported by specific heat measurements performed on glass for-
mers, see Fig. 1.6. At high temperature (that is Tg < T < Tm), the specific heat of the
supercooled liquid is a lot higher than the one of the corresponding crystalline solid;
this is no surprise, since the constituents of the liquid are free tomove around and thus
they can store much more energy than the constituents of the crystal. But when Tg is
crossed and the glass is formed (remember that we are working at τβ � texp � τα),
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the specific heat drops and becomes almost equal to that of the crystal [1]: this clearly
indicates that the relevant excitations in a glass are not too different from the exci-
tations found in crystals.4 On timescales τα, particles will then be able to leave their
cages and flow will be restored, bringing back the supercooled liquid.

To sum it up, the picture of a glass as a crystal with an amorphous lattice is
certainly appealing: it is supported by a real-space description of the early relaxation
in glass formers, and it is also elegant and easy to grasp. Nevertheless, we must again
take some precaution: first of all, talking about “getting out of the cage” makes it
look as if it were a single-particle process, while is really a cooperative process (as
we will see in the next paragraph): all particles are caged and the only way to get out
is through cooperative motion. Second, a crystal is a stable state of matter, while a
glass is not: it only lives on timescales much shorter than τα, after which diffusion
sets in and the supercooled liquid comes back.

1.2.5 Real Space: Cooperativity

We focus now on timescales of the order of τα, when caging breaks down and
structural relaxation is reached. Again, how does this process look like in real space?

We focus again on density fluctuations, but this time in real space:

δρ(x, t) ≡
N∑

i=1

δ(x − xi (t)) − ρ, (1.15)

where ρ is the number density N/V of the liquid. We want to understand how
correlated is the motion of particles in the system as relaxation sets in, so we have
to study how much the correlation in time of the density fluctuations, in a certain
region of space, is in its turn correlated with the same observable, in another point in
space. If the correlation is high, it will mean that structural relaxation in the first point
has to come together with relaxation in the other point, which is the definition of
cooperativity. To sum it up, we have to study the correlations in space of correlations
in time.

We already know that the correlation in time at a certain point x is given by the
dynamical correlation function

C(x, t) ≡ 〈δρ(x, 0)δρ(x, t)〉, (1.16)

so we just take this definition one step further, but in space, and we define a new
correlation function, the four-point correlation function G4(x, t)

G4(x, t) ≡ 〈δρ(0, 0)δρ(0, t)δρ(x, 0)δρ(x, t)〉 − 〈δρ(0, 0)δρ(0, t)〉〈δρ(x, 0)δρ(x, t)〉, (1.17)

4Although they are not the same. We will come back to this when we discuss soft modes.
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which essentially encodes the fluctuations of the dynamical correlation function. It
is a four-point function because it looks at the correlation between two different
points in space at two different points in time, rather than just two points in space as
two-point, ordinary correlation functions do.

The necessity of using multi-point correlation functions to detect cooperativity in
disordered systems was indeed first appreciated in the context of spin glasses (we
will return to this issue later), rather than supercooled liquids. An early discussion
about this point can be found in [23]. The first study of the G4 in that context is
reported it [24], although no interesting results were found at the time. From the G4

we can define a dynamical susceptibility in the following way

χ4(t) =
∫

dx G4(x, t), (1.18)

so that the χ4 corresponds to the average volume of the regions wherein dynamics
is cooperative. As those regions grow in size, and the G4 has thus a slower decay in
space, theχ4(t) is supposed to grow. So, if a maximum of theχ4 shows up at a certain
time, say t∗, then we will know that t∗ is the time when the relaxation is cooperative
the most. Studies of the χ4 in numerical simulations (see for Example [25], [26]
for a review) and even experiments [27] have indeed confirmed these expectations,
as shown in Fig. 1.7. If one superimposes the dynamic correlation function and its
corresponding χ4, it can be seen clearly that the maximum of the χ4, which is the
fingerprint of cooperativity, manifests during the α-relaxation regime. As it was
reasonable to expect, the decaging process is highly cooperative and requires all
particles (or a least an extensive fraction of them) to move, destroying the amorphous
lattice which had caused the slowdown in the earlier phases of relaxation. In addition
to this, the value χ4(t∗) at the maximum shifts up with decreasing temperature (one
can in fact see thatχ4(t∗) � (τα)θ [20, 26]), indicating that as temperature is lowered,
more and more cooperativity is required for the system to attain relaxation and flow.
This again is no surprise, since more cooperativity requires more time, producing
the glassy slowdown. This qualitative behavior is remarkably general [26].

Once the time t∗ whereupon cooperativity manifests the most is known, one
can take the corresponding G4(x, t = t∗) and define a lengthscale ξd , called the
dynamical lengthscale, which gives the average size of clusters of cooperativemotion
in the system. This is a more difficult task than the study of the χ4 since finite-size
effects can spoil the result unless sufficiently large systems are considered [20, 28,
29], but it can be carried out nonetheless, see for example [25, 28, 29].

The study of the phenomenology of these clusters, called dynamical hetero-
geneities, is a very rich and active field that reaches far beyond the glass transition
problem. But it being a feature of the α-relaxation regime (and thus, of the super-
cooled liquid), it is pretty tangential to our subject and we will not cover it in this
thesis. For the interested reader, we can refer to a review on the subject [30] and a
book [31].

At the end of this section, we hope that the reader has been convinced of the fact
that relaxation in glasses happens on two well-defined timescales, and that he has
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Fig. 1.7 The C(x, t) (top panel) and the respective χ4(t) (lower panel) at various temperatures
for a supercooled Lennard-Jones mixture in the various relaxation regimes. The lowest temperature
is highlighted with symbols. The maximum of the χ4(t) occurs when the G4(x, t) is long-ranged
the most, which indicates high cooperativity. Unsurprisingly, relaxation is the most cooperative at
t∗ � τα. Moreover, the peak of the χ4 shifts up as T is lowered. Reprinted figure with permission
from Berthier and Biroli [20]. Copyright (2011) by the American Physical Society

a clear visual representation of how these two phases unfold in real space. First, a
fast relaxation (β-relaxation) whereupon particles are caged and only vibrate around
equilibrium positions arranged in an amorphous fashion. Then, on timescales t∗ �
τα � τR , a second relaxation (α-relaxation) whereupon particles decage and the
whole structure rearranges cooperatively.

Weconclude here our exposition of themain physical properties and features of the
glass problem. Of course a lot more could be said (stretched exponential relaxation,
violation of the Stokes-Einstein relation for viscosity and diffusion, etc.), but all
these phenomena tend to happen in the supercooled liquid, that is on timescales
such that t � τα and so they are out of the scope of the present work, which, as
we stress again, is focused on the metastable glass. For the interested reader we
reference the pedagogical review of [1], the more technical one of [20], along with
some more reviews and textbooks [3, 15, 32–36]. We will balance this lack of focus
on the supercooled liquid with a more detailed treatment of the actual glass, when
τβ � t � τα.
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Chapter 2
From Supercooled Liquids to RFOT

In the introductory chapter we focused on the supercooled and deeply supercooled
branches in Fig. 1.1, as a way to properly introduce the phenomenon of the glassy
slowdown, the fundamental notion ofmetastable glassy state, and lay the groundwork
for the discussion of the Random First Order Theory of the glassy slowdown which
this thesis is based upon.

This discussion takes place in the present chapter. We introduce the basics of
RFOT, which posits that the slowdown of the dynamics in the glassy regime can
be explained in terms of the insurgence of a great number of metastable glassy
states, which trap the dynamics and hamper structural relaxation, thereby forcing
the glass former in a metastable, out-of-equilibrium glass. We proceed by giving
some arguments in support of the RFOT picture, in light of the phenomenology of
the glassy slowdown discussed earlier. We then review summarily the RFOT picture
over the course of a conceptual cooling experiment on a generic glass former, also
discussing the possibility or necessity of an ideal glass transition. We conclude the
chapter with a brief review of some other approaches to the glass problem.

2.1 The Random First Order Theory of the Glass
Transition

The problemof formulating a theory of the glassy slowdownhas been open for at least
three decades, and by all appearances is still far from being solved. There are at least
two reasons for this. The first one, of course, is that experiments, simulations and the
like are very hard to performbecause of the impossibly large experimental timewhich
would be needed. As we said in the introduction, the theories of the glass transition
which are in competition today were born as theories of supercooled liquids, and so
theirmost relevant predictions, wherewith “relevant”wemean predictions that could
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actually enable us to validate one theory and falsify the others, always kick in inside
a deeply supercooled regime which is experimentally and numerically unreachable.
A second reason, which is more subtle, is that it is not even very clear what a theory of
glass transition is actually supposed to do. Since the main phenomenon is the glassy
slowdown, a theory has at least to explain why the slowdown happens and propose
a coherent theoretical picture for it. So it has, at the very least, to allow one to get
back the VFT law, or some alternative law, like Bässler’s, to fit the Angell’s plot with.
Already at this point we can see how fishy the situation is: there is not even agreement
on which predictions the theory is supposed to produce; fits are just fits, after all. As a
result of this, competition between the various theories is mainly based on criteria of
theoretical consistency and predictive power [1], rather than quantitative, stringent
tests that are impossible to perform and, even when they are performed, always leave
some room for interpretation wherein incorrect theories could settle and thrive (the
debate on the VFT law is a good, but definitely not the only, example).

If the aim of the theorist is to formulate a “universal” theory à la Landau (which
is the declared goal and philosophy of RFOT, for example), then there is only one
universal quantity that such a theory canbe able to predict: namely, a critical exponent.
Unfortunately, apart from the critical exponents of MCT [2] (which are anyway
relative to a nonexistent dynamical arrest transition, as we are going to discuss), no
such critical exponent has ever beenmeasured, and indeed, since the glass transition is
no transition at all, one even wonders where to look for such an exponent. As amatter
of fact, the greatest, recent success of RFOT consisted in the prediction of the critical
exponents of the jamming transition in hard spheres [3], the jamming transition [4–
6] being a problem which initially was not related to glass forming liquids, if not
in a tangential manner. The RFOT, as all other theories of the glass transition, was
initially conceived as something that lives on the equilibrium, supercooled branch
in Fig. 1.1. And yet it had to go all the way to T = 0 on the glassy branches (from
a very pedestrian standpoint, the jamming transition is basically what happens to a
large class of glasses when they are quenched down to zero temperature) to produce
a quantitative, falsifiable prediction of an exponent. This strange fact can however
teach us a lesson: theories on the glass transition can make falsifiable predictions, if
only one bothers to look at the actual glass, which is the only thing we are actually

Fig. 2.1 Gibbs free energy as a function of the magnetizationm for the ferromagnetic Curie-Weiss
model above (left) and below (right) Tc

http://dx.doi.org/10.1007/978-3-319-60423-7_1
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able to look at, and that we can experiment on. One of the aims of this thesis is to
convince the reader that, even tough RFOT struggles (as all other theories do), to
affirm itself when it must describe supercooled liquids, it is definitely superior to
(and has a lot more potential than) other theories when it comes to the treatment of
the metastable glass. In the following we will explain RFOT with added focus on the
central concept of metastable state, as a way to get this point across.

2.1.1 The Foundations of RFOT

The Random First Order Theory of the glass transition is based on three conceptual
pillars:

1. The glassy slowdown is caused by the emergence, at low temperature, of a large
collectionofmetastable states. Thedynamics has to proceed as a series of activated
barrier jumps between those states, causing the slowdown.

2. These states have a thermodynamic origin, in the sense that they can be identified
with the minima of a static free-energy functional.

3. These states are exponentially many in the system size N , with their number
given by N = e�N , where � is a static quantity called configurational entropy
or complexity.

Summarizing, RFOT says that the slowdown of the relaxation dynamics of a liquid
close to glassiness is due to the fact that it takes place in a very rough free energy
landscape (FEL), characterized by the presence an exponential number of minima.
RFOT started essentially as a mean-field approach to the study of the free-energy
landscape in generic disordered systems [1].

To fix ideas, let us consider the topical example, namely the Curie-Weiss theory
of ferromagnetism. In that context, one is able to compute the Gibbs Free energy
f (m, T ) of the system, as a function of the global magnetization m [7]. The Hel-
moltz free energy is the Legendre transform of the f , so it will be given, at zero
external magnetic field, by the Gibbs free energy evaluated in its stationary points
m∗, f (m∗(T ), T ). At high temperature, only one minimum with zero magnetiza-
tion is present and the system is paramagnetic and ergodic, i.e. it can visit all of the
microscopic configurations that are allowed by conservation laws. But below a cer-
tain temperature Tc (see Fig. 2.1), the paramagnetic minimum splits in two distinct
minima with m∗ �= 0, which correspond to two different states with opposite mag-
netizations. A phase transition takes place: in the thermodynamic limit, the system
cannot go from one state to the other because it would have to surmount extensively
(∼ N ) large barriers to do so, and ergodicity is broken. From now on, the expres-
sions “minimumof the energy landscape” and “metastable state” are to be considered
interchangeable.

RFOT follows this basic nucleus, with only one (but very game-changing) mod-
ification. Since we are considering a disordered system, the Gibbs free energy gets
replaced with a more complicated free energy functional which is a function of a
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local order parameter, rather than a global one. In the case of spin systems, it will
be a function of all the single-site magnetizations mi and is referred to as Thouless-
Anderson-Palmer (TAP) free energy [8]. In the case of liquids, it is usually a func-
tional of the local density profile [9]. For a lattice gas we can for example define the
Landau potential [1]

�({μi }, T ) ≡ − 1

β
log

∑

ni

exp

[
−βH({ni }) − β

N∑

i=1

niμi

]
, (2.1)

where ni is the site occupation number, H is the Hamiltonian and μi a local chemical
potential. The free-energy functional F({ρi }) will then be the Legendre transform of
the � with respect to all the μi s:

F({ρi }, T ) = �({μ∗
i }) +

N∑

i=1

μ∗
i ρi , (2.2)

with the μ∗
i s determined by the condition

∂�

∂μi
+ ρi = 0. (2.3)

This definition can be generalized to the case of a density profile ρ(x) in the con-
tinuum [7, 9], as we are going to see in the following. The FEL is the hyper-surface
obtained by scanning the F({ρi }) over all possible values of the local order parame-
ters ρi .

Its stationary points, in particular, have cardinal importance. As the F is the
Legendre transform of the �, this means that

�({μi = 0}, T ) = min{ρi }
F({ρi }, T ), (2.4)

which means that the thermodynamics of the system in absence of external chemical
potentials is given by the free energy functional computed on its stationary points
(as it happens if the Curie-Weiss model where the Helmholtz free energy is given by
the Gibbs free energy computed in its stationary points in m).

With these definitions, the analogy with magnetic systems is clear: if we consider
local density fluctuations

δρi ≡ ρi − ρ, (2.5)

where ρ is again the number density, we can see that the homogeneous, high tem-
perature liquid (δρi = 0) corresponds to the paramagnet, while the glass, with its
amorphous nature, would correspond to a disordered ferromagnet with a rough free
energy landscape. A crystal would not be homogeneous, but it would anyway have
a periodic δρi profile, so it would be analogous to an anti-ferromagnet [7]. We can
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appreciate how the idea of a glass as a system with a rough free energy landscape is
indeed very reasonable (see for example [10–13]).

We now proceed to explain why the three tenets of RFOT are coherent with the
phenomenology presented in the preceding chapter.

2.1.2 Dynamics: MCT and Goldstein’s Picture

Let us start with points 1 and 2. Since those points make assertions about dynamics,
we consider the theory that has been, up to very recently, the only first-principles
theory for the dynamics of glass formers: the Mode Coupling Theory (MCT) [2, 14,
15].

2.1.2.1 Mode Coupling Theory and the p-spin

The aim of Mode Coupling Theory is to write a closed equation for the intermediate
scattering function (or equivalently, the dynamical structure factor) Fs(q, t) for an
equilibrated liquid close to glassiness. Let us consider the Newtonian (deterministic,
without noise) dynamics of a generic liquid made of N particles with positions xi
and momenta pi . Every macroscopic, time-dependent observable for such a system
will be a function of the positions and momenta, A(t) ≡ A({xi (t)}, {pi (t)}), like the
density fluctuations in Eq. (1.15). From Hamilton’s equations, one can derive the
equation of motion for a generic observable A(t)

d A

dt
= {A(t), H} ≡ iLA(t), (2.6)

where {A, B} is the Poisson bracket

{A, B} =
N∑

i=1

(
∂A

∂xi
· ∂B

∂pi
− ∂B

∂xi
· ∂A

∂pi

)
, (2.7)

and we have defined the Liouville operator

L(•) ≡ −i{•, H}. (2.8)

We want to write an equation of motion for a correlator C(t) ≡ 〈A(t)A(0)〉, where
A(t) = δρi (q, t), and 〈•〉 denotes an average over the initial conditions xi (0) and
pi (0) carried out with the canonical distribution. The original derivation ofMCT car-
ries out this program using Zwanzig’s projection operator formalism [16] (although
field-theoretic derivations are available, see [17]). We skip directly to the final result

http://dx.doi.org/10.1007/978-3-319-60423-7_1
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d2F(q, t)

dt2
+ q2kBT

mS(q)
F(q, t) + m

NkBt

∫ t

0
du

〈
R−qRq(t)

〉 d

dt
F(q, t − u) = 0,

(2.9)
where

Rq(t) = d J L
q

dt
− i

i |q|kBT
mS(q)

δρq.

and J L
q is the longitudinal current [18]. This result is exact and does not require any

simplifications. The nucleus ofMCT consist in two uncontrolled approximations that
are made on the memory kernel

〈
R−qRq(t)

〉
in order to get a closed, soluble equation.

For the sake of brevity, we do not discuss them here and refer the interested reader to
[18].We justmention that the first step consists in projecting the kernel onto the space
of bilinear density products, and the second in expressing the resulting four-point
dynamical correlation function as a product of two two-point functions Fs(q, t) [1,
18]. At the end of the day, one gets for the memory kernel

m

NkBt

〈
R−qRq(t)

〉 = ρkBT

16π3m

∫
dk |Ṽq−k,k|2F(k, t)F(|k − q|, t), (2.10)

where the vertex Ṽq−k,k has the definition

Ṽq−k,k ≡ {
(q̂ · k)c(|k|) + q̂ · (q − k)c(|q − k|)} , (2.11)

and c(|q|) is the direct correlation function [9]. With this expression, one can get a
closed integro-differential equation for the intermediate scattering function, which
can be solved easily once the static structure factor S(q) is known.MCT is thus capa-
ble of predicting the relaxation patterns of glass formers from exclusive knowledge of
static information. Despite the fact that the approximations involved are uncontrolled
(which means that still today there is no idea as to what we are actually discarding
in imposing them), this is anyway a remarkable result and MCT has enjoyed a lot of
success since its inception.

The main prediction of MCT is undoubtedly the one of dynamical arrest: at high
temperature the dynamical correlator decays exponentially to zero, as one would
expect from the discussion in Sect. 1.2.3. However, at a certain temperature TMCT

(sometimes denoted simply as Tc), the correlator, after an initial fast relaxation, will
remain stuck on a plateau and the system will never attain equilibrium: an ergodicity
breaking takes place. At temperatures T � TMCT , one can observe a two-step decay
reminiscent of the one discussed in Sect. 1.2.3 (see Fig. 2.2). In fact, the length of
the plateau, which as we already know corresponds to the α-relaxation time, goes to
infinity on approaching TMCT as

τα ∝ 1

(T − TMCT )γ
, (2.12)

where the γ exponent can be computed from thememory kernel. This sharp transition
can be interpreted as one from liquid to solid, and since no information about a

http://dx.doi.org/10.1007/978-3-319-60423-7_1
http://dx.doi.org/10.1007/978-3-319-60423-7_1
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Fig. 2.2 The various
relaxation patterns predicted
by MCT, on approaching
from above the MCT
transition. Reprinted figure
with permission from
Berthier and Biroli [1].
Copyright (2011) by the
American Physical Society
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crystalline state was used in the derivation, the solid the system freezes into must be
non-crystalline, i.e., a glass [18].

This looks amazing: we have a first principles theory for the dynamics of glass
formers which is able to predict the two-step relaxation patterns observed in simula-
tions and experiments, and also predicts a sharp transition, with ergodicity breaking
and divergence of the relaxation time, at a certain temperature. There is only one
small problem, namely that, in pretty much all cases

TMCT > Tg,

so one can easily go and see if the transition is actually there, and this is not the case:
the α-relaxation time does grow sharply, but it stays finite and the system remains
ergodic at temperatures below TMCT . The MCT transition does not exist in real glass
formers and must therefore be an artifact of the theory and its approximations [1,
19].

The reason for such a spectacular discrepancy would have been apparent some
years after. Already in the original papers of Bentgzelius et al. [14] and Leutheusser
[15], the authors proposed a “schematic” approximation of theMCT equation, which
consisted in simplifying thewave vector dependence of thememory kernel, replacing
the integral over kwith its value at a certain wave vector k0 where the static structure
factor has a strong peak. With this simplification one gets the “schematic” MCT
equation

d2φ(t)

dt2
+ �2

0φ(t) + λ

∫ t

0
du φ2(t − u)φ̇(u) = 0. (2.13)

This equation happened to have the same form as the equation that would have been
derived in [20] for the equilibrium dynamics for a certain class of schematic models
of disordered ferromagnets, i.e. spin glasses (SG) [21]. The generic Hamiltonian for
these models was first introduced in [22] and has the form

H =
∑

i1<i2<···<i p

Ji1,...,i pσi1σi2 . . . σi p , (2.14)
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where the couplings Ji1,...,i p are identically, independently distributed random vari-
ables (usuallywith aGaussian probability distribution). They are called p-spin spher-
ical models (PSMs) because of the p-body interaction involved (with p > 2), and
because the spins are soft spins which must obey the spherical constraint

N∑

i=1

σ2
i = N (2.15)

Indeed, it was this analogy between MCT and the dynamics of p-spin SG that gave
the original impulse for the formulation of RFOT as a theory for describing the glass
transition [20, 23–26].

The PSM, although idealized and decidedly far from being a realistic model of a
glass former, has numerous advantages: both its statics [27] and dynamics [28] can
be exactly solved and the properties of its free-energy landscape can be studied in
great detail. In particular, the presence, in a certain range of temperatures, of a great
number of metastable minima with nonzero magnetization and free energy higher
than the paramagnetic one (as postulated by RFOT) can be proven analytically [29]
(see [30] for a review).

If one looks at the Hamiltonian (2.14), in can be seen immediately that all spins
interact with one another: the model is fully connected and has no space structure,
so it is a mean field (MF) model in the traditional sense. Because of this, the barriers
between minima in the free-energy landscape scale as the system size N ; in the
thermodynamic limit, N goes to infinity and barriers become in turn infinite: the
system is unable to nucleate from one state to the other and remains forever stuck in
the one it started from, producing an hard ergodicity breaking like the one observed
in MCT [30].

This invites us to rationalize the ergodicity breaking predicted by MCT as a MF-
born artifact: in the real world, barriers are always finite and the system can always
escape from the state is in, even though an extremely large time, of the order of τα,
is needed to do so. Because of this, the glass former spends as extremely long time
partially equilibrated inside a metastable state (and a plateau regime is consequently
observed), but it eventually escapes and relaxes, restoring ergodicity and bringing
back the supercooled liquid. But if we accept MCT to have a mean-field nature,
because of the analogywith the dynamical equations for aMFmodel (where activated
barrier crossing is forbidden by construction), then this activated scenario cannot take
place: as soon as the system finds itself in a state, it cannot escape and ergodicity
is broken. Today, the status of MCT as a mean-field theory of glassy dynamics,
although not apparent from direct inspection of the MCT equations, is pretty much
an accepted and established fact [1, 19]. Furthermore, the recent derivation of the
dynamics of hard spheres in the limit of infinite spatial dimensions (which as we are
going to see corresponds to the MF limit) [31] has shown that the exact dynamical
equations do have an MCT-like form. We refer to [32, 33] for further reading on the
MF nature of MCT.
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2.1.2.2 Goldstein’s Picture

As amatter of fact, the idea of the equilibrium dynamics of glass formers as a process
dominated by activation was not very new even back then (even the exponential
form of the τR(T ) growth points towards this), as it had already been formulated
by Goldstein [34] in 1969. Goldstein pictured the dynamics as taking place in the
potential energy landscape (PEL) of the liquid, i.e. the hyper-surface obtained by
scanning the interaction potential of the systemover all values of particle coordinates.
We can visualize is as a very rugged landscape of hills separated by narrow valleys
[35], at the bottom of which lie the minima of the potential energy of the system,
called inherent structures [19]. Adding thermal energy (i.e. raising the temperature)
can be seen as a flooding of this landscape, with the level of the water higher the
higher the temperature, and the system can be seen as a boat that has to navigate the
landscape [35].

When the temperature is low, only a few, disconnected lakes of water are present,
and to sail them all ergodically, the boat must be transported by land over the ridges
that separate the lakes: this is an activation event, ruled by Arrhenius’ law. Goldstein
postulated that energy minima differed only by a change of a subextensive number
n of degrees of freedom, and thus could be surmounted by a system equipped with a
thermal energy of order kBT . Thisway, the systemas awhole (as described by a single
point in configuration space) would always have been in the process of transition,
but on the local level the jumps would have been separated by a timescale that would
grow in temperature in an (at least) Arrhenius fashion as required by an activation-
dominated mechanism. Thus Goldstein’s picture provided a good explanation for the
two-step relaxation observed in glass formers and for the exponential growth of the
relaxation time: the short β-relaxation would correspond to our boat sailing inside a
single lake on a short timescale, while the α-relaxation would correspond to a much
longer transport by land of the boat, over a ridge and down into the next lake.

What happens if we keep flooding? Pictorially speaking, at a certain point the
flood should become so severe that the water arrives at the level of the highest ridges
which separate the valleys i.e. at the level of saddles, that is stationary points which
have at least one unstable direction. When this happens, the boat only sees a large
body of water wherein it is able to sail ergodically without the need for land transport:
activation ceases to be the main mechanism of relaxation and Goldstein’s scenario
breaks down. This should happen for an high enough temperature Tx , and analogy
with MCT suggest the identification

Tx ∼ TMCT

which has indeed been verified both in simulations [36] and experiments [37]. This
identification bolsters the picture of glassy dynamics below TMCT as an activation-
dominated process.

The idea of the glass transition as a phenomenon ruled by a topological change
in the energy landscape has indeed been very fruitful. In the PSM it can be proven
analytically [38] that the stationary points of the energy landscape are minima (i.e.
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they have no unstable directions) only up to a certain threshold energy Eth , above
which saddles take over. It can be also seen that TMCT corresponds to the temperature
such that the typical stationary points visited by the system are exactly those with
E = Eth , thereby providing an exact realization of Goldstein’s scenario. In real
glass formers, analytic calculations of the sort are not possible and one must rely on
numerics. Nevertheless, multiple studies (see for example [39–41] and the discussion
in [19]) seem to confirm this picture. These results are very welcome, since they
prove that even though in real liquids the MCT transition is wiped out by activation
mechanisms, the topological transition is still present and fuels the fundamental
analogy with the PSM even for out of MF glass formers.

Since the MCT temperature is the one where a crossover to activated dynamics
takes place, and metastable states responsible for the slowdown appear, it is com-
monly taken as the reference temperature where the onset of “glassiness” is located,
also because it has a fundamental and unambiguous definition, contrary to Tg . From
now on, when we say “low temperature”, we mean that we are below TMCT .

There is however an important warning to give: potential energy landscapes and
free energy landscapes are not the same thing and one must not confuse the two: the
energy landscape is defined in the configuration space of the liquid and is independent
of the temperature, while the free energy landscape is defined in the space of local
order parameters and changes when the temperature is varied. Of course the two are
the same when T = 0, and it could make sense to keep the identification as long
as the temperature is very low, but attention must always be paid and the idea of
identifying states with minima in the potential energy landscape is just plain wrong
[1, 19, 42].

At the end of this paragraph, we hope that the reader is convinced that the two-
step relaxation observed in glass formers is reasonably interpreted as originated
by the appearance, in the free energy landscape of the system, of a collection of
metastable minima (states) which exert a trapping effect on the dynamics for a stretch
of time t 	 τα and keep the liquid from attaining relaxation and flowing. And that
the identification of these states with minima of the free energy landscape appears
reasonable in light of the analogy between MCT and the dynamics of the PSM, and
by the presence of a topological transition in the PEL in both cases. Summarizing,
we hope that he now believes that the two first tenets of RFOT appear at least a
reasonable starting point for a theory of the glass transition.

2.1.3 Complexity: Kauzmann’s Paradox

Let us now turn to point 3. We have to ask ourselves the question “how many states
can one have?”

How can we label a state? As we said, a state is a minimum of the FEL identified
by a set {ρ∗

i } of local densities (in liquids), or a set {m∗
i } of local magnetizations

(in spin models). Thus a glassy state in a realistic glass former corresponds to an
amorphous density profile the liquid is frozen into. We had already encountered
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this picture when discussing caging: particles can only vibrate around equilibrium
positions arranged in an amorphous structure, thus every state corresponds to such a
structure.

Since these structures are amorphous, we can already surmise that a lot of them
should exist. There are not many ways of arranging particles in an ordered structure,
but there sure are a lot of possible disordered arrangements. Intuitively, the number
of such arrangements should be equal to the number of configurations the liquid has
at its disposal, divided by the number of configurations visited by the glass during
the vibration around the amorphous structure.

The thermodynamic potential that logarithmically counts the configurations avail-
able to the system is the entropy, and we already know from the discussion in
Sect. 1.2.4 that the vibrational excitations of particles in a glass are not too dif-
ferent from the ones found in crystals. We could thus hope to count the number of
amorphous structures by taking the supercooled liquid entropy and subtracting from
it the entropy of the corresponding crystal, as a reasonable proxy for the vibrational
entropy of the glass.1 This leads to the definition of the excess entropy

Sexc(t) ≡ Sliq(T ) − Scr (T ), (2.16)

which we can measure by exploiting the relation between entropy and specific
heat [19]

dS

dT
= cp(T )

T
. (2.17)

In Fig. 2.3 we show the excess entropy as a function of the temperature for salol,
a fragile glass former. We can see that the excess entropy freezes at Tg to the value it
had in the supercooled liquid: this is due to the fact that there is no latent heat at the
glass transition (differently from what happens at the melting point Tm , see Fig. 1.1),
so the entropy is continuous at Tg . On further cooling, the excess entropy stays pretty
much constant. This is of no surprise, as its derivative is proportional to the difference
between liquid and crystalline specific heat, and we already mentioned in Sect. 1.2.4
that cliqp 	 ccrp . Nevertheless, the excess entropy at Tg is of the order of 3kB per
molecule, which is large [44]: the number N of possible amorphous configurations
scales exponentially with the size of the system

N 	 e�N (2.18)

where � is the complexity (some prefer to call it configurational entropy and denote
it Sc or sc, but it is a matter of taste), and is the central static quantity of RFOT.

1A justification is that vibrational contributions are given by an harmonic expansion around a
potential energy minimum, and the fact that the minimum corresponds to an ordered (crystal) or
disordered (glass) arrangement of the particles should not change matters much. This is reasonable,
but it does not make sense for systems where a harmonic expansion does not exist, like hard spheres
[19].

http://dx.doi.org/10.1007/978-3-319-60423-7_1
http://dx.doi.org/10.1007/978-3-319-60423-7_1
http://dx.doi.org/10.1007/978-3-319-60423-7_1
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Fig. 2.3 Excess entropy as a
function of temperature for
salol, in k J/(K × mol). Dots
are experimental data, while
the line is a fit of the form
Sexc(T ) = A(1 − TK /T ).
Reprinted from Richert and
Angell [43] with the
permission of AIP
Publishing

In glass formers, the presence of an exponentially large number of metastable
glassy states (and thus the possibility to define a configurational entropy) is a reason-
able hypothesis (at least we hope that this discussion made it easier to accept), but
it is an incontrovertible fact in the PSM, where the complexity can be analytically
computed [29, 30] starting directly from the stationary points of the TAP free energy
[8]. Again the PSM furnishes us with a setting wherein the basic ideas of RFOT are
exactly realized.

2.1.3.1 Kauzmann’s Entropy Crisis

If we look closely at Fig. 2.3, we can see a curious thing. The extrapolation of the
excess entropy to temperatures below Tg goes to zero at about 175K, a value far above
absolute zero. So there is a finite temperature where the entropy of the supercooled
liquidwouldbecomeequal to that of the crystal, a very counter-intuitive phenomenon.
We would expect the liquid entropy to be always above the crystalline one (a liquid
is disordered, a crystal is not) for any finite temperature.

This vanishing of the excess entropy for finite temperature had indeed been known
for quite some time, as it was first described by Kauzmann in 1948 [45]. What
Kauzmann didwas to extrapolate below Tg the data for various observables (enthalpy,
free volume, energy, etc.), including the excess entropy. FromFig. 2.4,we can observe
that the excess entropy seems to vanish for temperature different from zero in various
glass formers. This temperature has been christened TK in honor of Kauzmann,
and the vanishing of the excess entropy is referred to as Kauzmann’s paradox, or
Kauzmann’s entropy crisis.
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Fig. 2.4 The original figure
from Kauzmann’s paper. For
various glass formers, the
temperature seems to vanish
at T = TK , TK �= 0.
Reprinted from [19]

We must immediately state a fact: Kauzmann’s paradox was a paradox only back
then. As strange as the vanishing of the excess entropy can appear, there is no law
of nature that actually forbids it. The crystallization transition in hard spheres for
example is precisely due to the fact that the crystalline entropy becomes larger than
the liquid one at high enough density [46], so nowadays we know that the entropy
crisis does not violate any fundamental laws and its presence is not a serious problem.
Nevertheless, it appeared paradoxical back then, andKauzmann himself, in his paper,
was eager to find a way out of it.

There are twopossible interpretations. Ifwe believe the fact that the excess entropy
is a proxy for the configurational entropy �, and that it is possible, at least in prin-
ciple, to equilibrate the supercooled liquid down to TK , then a phase transition must
be located there. If the configurational entropy vanishes linearly at TK as Fig. 2.4
suggests, then the corresponding specific heat has a step at TK , signature of a second-
order transition [1]. This transition has been dubbed the ideal glass transition (some-
times Kauzmann transition).

Kauzmann himself did not believe this, and he proposed an alternative argument:
it is not possible to equilibrate the supercooled liquid down to TK , because the
relaxation time grows so much that, in the end, it becomes larger than the crystal
nucleation time. So either the glass former goes out of equilibrium and forms a glass,
or nucleation will kick in and crystallize our sample. In any case, the supercooled
liquid ceases to exist and the paradox at TK is avoided.We refer to [19] for a discussion
on this point.
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2.1.3.2 Is the Ideal Glass Transition Necessary?

Unsurprisingly, the interpretation of TK as the locus of a phase transition had a lot
more fortune. The idea that the glassy slowdown is a manifestation of an underlying
critical point at TK is indeed very appealing and conceptually elegant. It also brings
back the glass problem to a context, the one of critical phenomena, that physicists
are very familiar with, and for which a lot of theoretical tools are at their disposal.

An argument in favor of this idea is that the temperature TK is always very near
to the temperature T0 where the VFT fit has a divergence, and this applies to glass
formers which have Tgs that vary from 50 to 1000K (see [47] for a compilation
of data and [48] for a discussion). The coincidence is indeed remarkable, so much
that for many proponents of RFOT, it cannot be a coincidence and they see it as
incontrovertible proof that the ideal glass transition exists. However, there are glass
formerswhere TK and T0 can differ asmuch as 20%[49], so such unshakable certainty
is ill-advised, at least for now.

The idea of an ideal glass transition at TK is indeed so powerful and fascinating,
that over the years it has come to be identified as the main prediction of RFOT. This
is so much true, that most research articles that go and try to disprove RFOT focus on
disproving the existence of the ideal glass transition (see for example [50, 51]). This
misunderstanding is also probably due to the fact that most models used in RFOT
theory do have an ideal glass transition, starting from the paradigmatic PSM [30].

We argue here that identifying the ideal glass transition (and also the VFT law)
with RFOT means missing the point: none of the three tenets that we formulated
at the beginning of this section has anything to do with the ideal glass transition.
For the RFOT picture to hold, we only need that the insurgence of metastable states
cause the glassy slowdown, and that those metastable states have a static origin in the
sense that they can be identified with the minima of a suitable free energy functional.
This scenario can unfold independently from the presence or not of an ideal glass
transition at finite temperature.

In summary, we argue that even an avoided transition (TK = 0) is good enough
for RFOT [1].

2.1.4 Summary of RFOT: For TMCT to TK

In the preceding sections we have provided enough (at least we hope) arguments to
convince the reader that the RFOT theory of the glass transition is a good starting
point for a description of the physics of glass formers. Let us now give a more
unified perspective, and summarize what happens during a cooling experiment of a
glass former according to RFOT.

To be completely general, we focus on a generic system whose micro-
configurations are denoted as C and has a Hamiltonian H(C). The partition func-
tion is
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Z =
∫

dC e−βH(C). (2.19)

From the discussion of Sect. 1.2.4 we know that states can be visualized as “patches”
of configurations, namely those configurations which are visited by the system as
particles vibrate around the amorphous structure that identifies the state. Assuming
that each configuration can be unambiguously assigned to a single state, and that the
“tiling” so generated covers the whole space of configurations,2 we can write the
partition function as

Z =
∑

α

∫

C∈α

dC e−βH(C) =
∑

α

e−βN fα . (2.20)

Where α is an index that identifies a state, and we have defined the intensive free
energy fα of a state. We can transform the sum over α in an integral using Dirac
delta functions ∑

α

e−βN fα =
∫

d f
∑

α

δ( f − fα)e−βN f . (2.21)

We now notice that ∑

α

δ( f − fα) = N ( f ) = eN�( f,β), (2.22)

so that we are able to easily introduce the f -dependent complexity, which logarith-
mically counts the number of states with have the same in-state free energy f , or
equivalently, the number of minima in the FEL who have the same height f . We get

Z =
∫

d f e−βN [ f −T�( f,β)]. (2.23)

In the thermodynamic limit, we can evaluate this integral with the saddle-point (or
steepest-descent) method [53], getting

Z = e−βN [ f ∗−T�( f ∗,β)], (2.24)

where f ∗ is determined by the condition

d�

d f
= 1

T
, (2.25)

which means that the partition function is dominated by the states with f = f ∗
only, while the others do not have any impact on the thermodynamics of the system.
The states with f = f ∗ are referred to as equilibrium states for this reason, and the
complexity of those states

2This is a very strong assumption, but it can be rigorously proven to be true in the PSM, see [52].

http://dx.doi.org/10.1007/978-3-319-60423-7_1
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Fig. 2.5 The typical form of the complexity as a function of the in-state free energy f . It is a
monotonically increasing function in an interval [ fmin, fMCT ], and zero otherwise. For f > fMCT ,
the FEL is dominated by unstable stationary points and the complexity is accordingly zero, as
it happens in the PEL for E > Eth . At fMCT stable minima, which can be found everywhere
in the interval [ fmin, fMCT ], start to appear. At fmin , the complexity vanishes continuously as
the number of minima becomes sub-exponential. The states with f = fmin and those with f =
fMCT correspond to the typical equilibrium states visited by the system at T = TK and T = TMCT
respectively. Reprinted figure with permission from Berthier and Biroli [1]. Copyright (2011) by
the American Physical Society

�( f ∗(β),β) ≡ �(β), (2.26)

is accordingly called the equilibrium complexity, the one that is measured in experi-
ments and simulations.

The typical form of the complexity for a system with an RFOT-like FEL is shown
in Fig. 2.5. Let us now perform an infinitely slow cooling (such that the system is
always equilibrated) and discuss the various regimes that take place as the system
scans different regions of the FEL while f ∗(T ) changes with temperature.

• T > TMCT: At high temperature, theminimization of the the free energy functional
yields only the homogeneous solution ρ∗

i = ρ∀i , with the corresponding free-
energy F({ρ}) = Fliq . The system is ergodic and liquid.

• TK < T < TMCT: At T = TMCT , f ∗ = fMCT , states start to have an impact on
the system and the relaxation time starts to increase. Those states are metastable
since f ∗ > Fliq , but one can see that F = f ∗ − T�( f ∗, T ) = Fliq(T ) for every
T in this interval, and that the free energy is analytic at TMCT .
This can be interpreted as follows: for TK < T < TMCT , the equilibrium liquid
splits up in a collection of states, each identified by an amorphous structure and a
set of vibration modes around it. On timescales τβ < t < τα, the system remains
trapped in one of the equilibrium states with f = f ∗, producing the plateau regime
observed in the dynamics.When at t 	 τα relaxation approaches, the system starts
to visit the other equilibrium glassy states gaining an entropic advantage in the
form of −T�( f ∗, T ), bringing back the supercooled liquid with its free energy
Fliq(T ) = f ∗ − T�( f ∗, T ). This way, although states appear at TMCT , they only



2.1 The Random First Order Theory of the Glass Transition 35

impact the dynamics of the system and its equilibrium state remains always the
supercooled liquid (as experimentally observed). In fact, if we compute the prob-
ability, at equilibrium, to find the system in one particular equilibrium state α, we
get

Pα =
∫
C∈α dC e−βH(C)

∫
dC e−βH(C)

= e−βN f ∗

e−βN ( f ∗−T�( f ∗)) = e−N�( f ∗) −→
N→∞ 0, (2.27)

so the system “hops” seamlessly between all possible equilibrium states.
On lowering T , f ∗ will decrease and the system will sample states in lower and
lower regions of the energy landscape. We stress the fact that such a protocol is
very difficult to realize in practice as the relaxation time starts to grow sharply
below TMCT . If one performs an infinitely rapid quenching dynamics (like the
MCT one), the system will not have time to descend in the FEL and will remain
stuck in the highest states with maximal complexity.
Of course, an hopping process like the one we described can take place only in
real systems. In MF models, once the system is blocked in a state, it can never get
out, as MCT predicts.

• T ≤ Tk At T = TK , the equilibrium states become the ones with f = fmin and the
complexity vanishes. We have still fmin − T�( fmin) = Fliq , and the total entropy
� + svib is continuous, but the specific heat (cp = dS

d log T ) has a jump induced by
the vanishing of �: the entropy vanishing scenario of Kauzmann is realized and
the ideal glass transition takes place.
Below TK , the number of states becomes sub-exponential and the system can
now be found, at equilibrium, inside a single glassy state, thus yielding a stable,
thermodynamic glass.

This is how the glassy slowdown happens according to RFOT. One must admit
that the picture is quite elegant and brings together nicely many different inputs and
observations, fromMCT to excess entropy to Kauzmann’s paradox. Needless to say,
the PSM realizes this scenario exactly [30].

2.1.5 Beyond Mean Field: Scaling and the Mosaic

We mentioned at the start of this section that a theory of the glass transition has at
least to describe well the glassy slowdown, which means that it has to reproduce
the VFT fit (or some other fit) of the τR versus T dependence. Within RFOT, this
means that we need to compute τα as a function of T , and to do so, we must focus on
the dynamics, in particular on long timescales comparable with τα, when relaxation
occurs.

But this brings to the surface the great weakness of RFOT [1], namely its reliance
over the concept of metastable state, and consequently on a mean-field description.
The MF nature of RFOT models (starting from the PSM, but there are many others)
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makes it, on one side, an ideal playground to study metastability: states are sharply
defined, they have an infinite lifetime, and their properties can be studied analytically
even for realisticmodels of glass formers aswe are going to see in the following of this
thesis.But on theother side, the failure to take into account activationmechanisms and
non-MF effects in general, means that the theory is foundwantingwhen attempting to
describe the regime wherein non-MF effects come into play, which is also the regime
wherein relaxation occurs (remember the wrong MCT prediction of a transition at
TMCT ). This difficulty in going beyond MF (see for example [54] for a dynamics-
based attempt) is the great weakness of RFOT and a solution to this problem does
not seem to be forthcoming [1]. As a result of this, the connection between RFOT
and the dynamics of the system on long (t 	 τα) timescales comes from a bundle of
phenomenological scaling arguments, which goes under the name of mosaic theory
[24, 26, 44, 55], andwas essentially conceived as a reworking of the oldAdam-Gibbs
theory [56] to include the notion of complexity.

Mosaic theory is an attempt to bring out ofMF theMF-based concept ofmetastable
state: in the real world, the τα timescale is always finite, so the concept of metastable
state must become local in time. Indeed, sincemetastable states are, well, metastable,
they are intrinsically out-of-equilibrium objects and so any attempt at a rigorous
definition must start from the dynamics (see for example [57, 58]). Another problem
comes from the fact that states, being MF objects, do not take into account at all the
notion of real space. In MF models, there is no space structure, so it makes sense to
talk about the system globally being in a “state” and hopping to another global state at
the onset of relaxation as we said in the preceding paragraph. Once real space comes
into play, this picture clearly makes no sense: hopping from on state to another takes
place through a nucleation mechanism which can only be local in space: as soon as
a sufficient time passes for activation to happen, droplets will start to form at certain
points in the sample, and each of themwill be in a certain “state”. There is absolutely
no reason for them to be all in the same state, since all states with f = f ∗ (including
the one the system is about to leave) have the same free energy and thus they are
completely degenerate. Indeed, if there were a free energy gain in passing from one
state to another, it would mean that the system is not at equilibrium, in contrast to
the RFOT picture which asserts that the equilibrated, liquid system is restored by the
seamless hopping process between states. Thus, we can expect that the original state
will break up in a collection of tiles (a mosaic), each of them in a different state. The
fact that rearrangements must be local should not come as a surprise, considering
that the local nature of rearrangements in glass formers had been already pointed
out by Goldstein [34]. In summary, states must be defined locally both in space and
time, i.e. they are characterized both by a timescale τα and a lengthscale ξ.

We are interested in computing the timescale as a proxy for τR . What we can do is
work out the lengthscale, get from it an estimate of the barrier size to rearrangement,
and get from it the timescale using Arrhenius’ formula. Since we have said that
rearrangement should take place through nucleation, let us assume that our glass
former is in a state γ. When a time t 	 τα has passed, thermal fluctuations will form
a droplet of linear size R, typically in another state δ. On the boundary, the mismatch
between the two states will induce a free energy cost in the form of a surface tension
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ϒRθ, (2.28)

where theta is a generic exponent, θ ≤ d − 1. Usually it is equal to d − 1 (where d
is the dimension of space) since it represents a surface term, but this not need be the
case in general [19]. This free energy price has to be balanced by a free energy gain
of some sort. In nucleation theory it is usually given by the free energy difference
between the two coexisting phases, but in this case the two states have the same free
energy f = f ∗. Thus the complexity comes into play: the droplet can be found in
N = eR

d�(T ) different states, so it is of course invited to explore them all and gain
an entropic advantage in the form of −T�(T )Rd rather than staying in state γ. The
total energy barrier for forming the droplet is

�F = ϒRθ − T�(T )Rd , (2.29)

which means that large droplets will tend to survive, while small ones will tend to go
back to the background state. The crossover between the two happens at a lengthscale
ξ which can be obtained by setting �F to zero. We get:

ξ =
(

ϒ

T�(T )

) 1
d−θ

. (2.30)

Now, following [26], we fix the barrier height � as

� ≡ max
R

�F(R) = ϒ
d

d−θ

[T�(T )] θ
d−θ

, (2.31)

and using Arrhenius’ formula we get

τR = τ0 exp

(
ϒ

d
d−θ

kBT [T�(T )] θ
d−θ

)
. (2.32)

Now we know that near to TK

�(T ) 	 A(T − TK ), (2.33)

so we can plug this into the formula for τR , getting

τR = τ0 exp

(
ϒ

d
d−θ

kBT [AT (T − TK )] θ
d−θ

)
, (2.34)

so we get a law which looks like the VFT one, although not the same. However, in
[26] it was claimed that θ = d/2, which would give for τR
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τR = τ0 exp

(
ϒ2

kBT [AT (T − TK )]
)

	
T→TK

τ0 exp

(
B

T − TK

)
, (2.35)

exactly the VFT law. We must however state again that the VFT law is just a fit, not
a fundamental law or the result of a first-principles computation, so perhaps it is not
worth it to fiddle with θ and make assumptions about its value just for the sake of
getting it back. Using the (2.34) with θ as a fitting parameter would probably do an
even better job than the VFT and there are alternative laws which provide anyway a
good fit of the data.

Summarizing, even if we had to use some arguments (and some common sense)
to get the results, RFOT indeed passes the test, in the sense that it does provide a good
explanation for the super-Arrhenius increase of τR , in the form of the complexity:
the barrier size scales with the inverse of a power of � and thus increases when TK
is approached, causing a sharper increase that the simple Arrhenius’ one (where the
barrier would be constant).

There is an alternative formulation of the mosaic theory which does not use
nucleation and is conceptually more robust than the one we just presented, we refer
to [19, 59] for details. In [59], the authors also propose a method to measure the
lengthscale ξ, through the definition of a special correlation function, the point-
to-set correlation function. The measurement of ξ using this tool has indeed given
encouraging results and a growth of ξ on supercooling is observed [60], so themosaic
picture, and RFOT with it, does seem to be on the right track when it comes to the
description of supercooled liquids. We refer to [19] for an in-depth discussion on the
point-to-set lengthscale.

We conclude here our exposition of RFOT, and we hope that we managed to make
it looks at least as a reasonable starting point for a theory of glasses. For further
reading, we refer to [19] for a pedagogical approach, to [1] for a more technical
point of view, and to [44] for a critical assessment. We refer also the reviews [55,
61], and a book [62].

2.2 Other Approaches

A much beloved quote by prof. D. Weitz says “There are more theories of the glass
transition than there are theorists who propose them”. While it is certain that prof.
Weitz was a little exaggerating, it is true that there are indeed many different theo-
retical pictures for the glassy slowdown. This is not necessarily a bad thing, since it
shows that this field of research has still many open problems, there is still a lot of
work to do, and the debate is fluid and lively (tellingly, prof. Weitz’s quote is much
beloved by glass theorists themselves), so there it no shortage of “other approaches”
that we could talk about.

However, since they are so many, we will focus here only on the ones that are
most popular at the moment, and that are more suitable of an analytic, statistical-
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mechanical treatment. Reviews on the approaches we will leave out can be found for
example at [63–65], and we refer to section IV.A of [1] for more references.

2.2.1 Dynamic Facilitation Theory

TheDynamic Facilitation Theory (DFT) [66–68] picture is in manyways completely
specular to the RFOT approach. Whereas RFOT posits a static explanation (in the
form of metastable states) for the glassy slowdown, DFT favors a completely dynam-
ical approach and postulates that thermodynamics plays absolutely no role. While
RFOT relies mainly onMF-born concepts (like global metastable states and the FEL)
and on MF models, DFT is firmly rooted in real space and its paradigmatic models
all are finite-dimensional. While RFOT is at pain when it comes to link its thermo-
dynamic foundations to dynamics, in DFT dynamics is the very cornerstone of the
approach.

These stark differences between the two approaches come from their differing
views about what is the distinguishing phenomenological fingerprint of glassiness.
For RFOT, the fingerprint of glassiness is activation, à la Goldstein, so RFOT natu-
rally stages itself into the FEL, and as a result of this it naturally relies on a static MF
description of the FEL. According to DFT, the fingerprint is cooperativity, which
takes place during the dynamics of the system when viewed in real space. So DFT,
accordingly, stages itself in real space and naturally relies on dynamical tools [19].

The philosophy of DFT is that diffusion and relaxation can only be achieved
through cooperativity: for a particle to escape its cage, all particles around it must
also decage and move away, and this in turn will stimulate other particles to move
[69]. So, we can see decaging process as the creation of a new defect (a cluster of
mobile particles), which is in turn susceptible of inducing (facilitating) mobility in
nearby regions, creating other defects. This picture is undoubtedly reasonable, as we
have seen in paragraph Sect. 1.2.5 that facilitation does play a role in the dynamics
of glass formers close to Tg . It looks even more reasonable in light of the fact that
it is possible to define models based exclusively on the idea of dynamic facilitation,
called Kinetically Constrained Models (KCMs) [67].

2.2.1.1 Kinetically Constrained Models

KCMs can come in different flavors, but they all have two things in common: their
thermodynamics is trivial, and their dynamics is constrained by rules which mimic
the facilitation picture. A first example is the Kob-Andersen (KA) lattice gas [70],
wherein a particle can hop from one site to the other only if i) it is empty, and ii) if
there are less thanm neighbors around it (m = 6 on a cubic lattice would correspond
to the unconstrained gas). It is basically a model that enforces the notion of caging
in a strict sense, and can be studied for various values of m and different lattice
topologies, from cubic to Bethe [67].

http://dx.doi.org/10.1007/978-3-319-60423-7_1
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Another champion of KCMs is the Fredricksen-Andersen (FA)model [71], which
opts for a specular philosophy to the one of the KA model, focusing on holes rather
than particles. Each site on the lattice can be mobile ni = 1 or not ni = 0. The
Hamiltonian, again, contains no interaction

HFA = J
∑

i

ni (2.36)

and 〈ni 〉 ∝ exp(−β J ), so that mobility is suppressed at low temperatures (as one
would expect). The dynamics, for its part, takes place with the usual Glauber rules,
but a site can make a transition from mobile to non-mobile only if there are at least
other k neighboring mobile sites. A variation on the FA is the East model [72], where
only sites on the left in each space dimension can facilitate the dynamics.

2.2.1.2 Strengths and Weaknesses

The main advantage of DFT lies in the fact that dynamics is the very core of the
approach, so, for example, their predictions on the relaxation time can be easily
obtained. Some models show a strong, Arrhenius-like behavior, like the FA with
k = 1, while others have a more fragile character. The East model for example has
log τα 	 1

T 2 , which quite reminisces Bässler’s law, Eq. (1.7), and the FA on a square
lattice with k = 2 (the original version of the model from [71]) is even more fragile,
with τα 	 exp[exp(c/T )]. The great majority of KCMs do not predict a divergence
of the relaxation time at finite temperature, but it is possible to define a KCM in such
a way that a divergence is present [73]. Despite this, their predictions for τα can be
shown to fit experimental viscosity data quite well, see for example [74, 75]. So DFT
does pass the test, perhaps in an even more convincing manner than RFOT.

Another great advantage of KCMs lies in the fact that they naturally reproduce
the phenomenon of dynamical heterogeneities [76, 77], so much that some studies
on dynamical heterogeneities were actually motivated by their observation in the
context of KCMs. They also give the possibility to study in great detail multi-point
correlation functions (like the G4), even enabling researchers to get rigorous scaling
relations between susceptibilities, lengthscales and timescales [78, 79]. The DFT
picture provides also a natural explanation of the violation of the Stokes-Einstein
relation for viscosity and diffusion [80]. We stress that all these predictions come
easily from DFT, while a dynamics-based formulation of RFOT is still lacking (see
[31] for a possible starting point), so there is no denying that the DFT picture is
clearly superior to RFOT when it comes to the study of dynamics in the supercooled
liquid regime.

However, there are someweaknesses. The biggest, conceptual weakness lies in the
exclusive role attributed to facilitation, which is seen as the only possible mechanism
for relaxation. To make this more clear, this means that mobility and defects cannot
be created in any way: a region of the system which is not mobile cannot relax

http://dx.doi.org/10.1007/978-3-319-60423-7_1
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unless a drifting defect visits it, and no spontaneous motion is possible (mobility is
conserved). This is a very strong assumption, which may not be true, see for example
[81].

On the other hand KCMs cannot make do without the assumption of mobility
conservation, or at least without assuming that violations to this assumption become
more and more rare when T is lowered. If mobility can be created and destroyed,
KCMs immediately become trivial models and their glassy phenomenology is wiped
out [1], which is a huge and undefended weak point.

In addition to this, as much as RFOT suffers from an over-reliance on MF-based
statics, DFT seems to suffer from an over-reliance on dynamics. In particular, the fact
that KCMs all have a trivial thermodynamics does not even seem a necessity, and it
constitutes no proof that glass formers share this feature. Moreover, there is a subtle
point, namely the fact that having a trivial thermodynamics does not mean that all the
RFOT based phenomenology of metastable states cannot take place in KCMs. The
thermodynamics of RFOT models is indeed trivial, in a way, since from TMCT down
to TK equilibrium is always given by the supercooled liquid; and indeed, the presence
of metastable states cannot be detected using standard statistical mechanical tools,
requiring to use of the TAP approach [8] or the replica method [7]. In summary, we
argue that the triviality of the standard thermodynamics of KCMs does not imply the
triviality of their replica-based (or state-following based) thermodynamics.

A less severe and more taste-related weakness is the one of predictive power.
Intuitively, for a theory to be very predictive we should have to put a few things into
it, and get a lot in return. DFT, as we just detailed, does give you a lot, but it also
requires you to put a lot inside. As interesting as KCMs are, there is at present no
way of linking them to microscopic models of glass formers [1]. Their dynamical
rules in particular are just imposed from the outside without any microscopic of
first-principles justification, and they cannot be generally derived (see [82] for an
exception) from an interaction Hamiltonian.

This means that in order to get quantitative predictions about real glass formers,
KCMsmust usually be suitably “tuned” using experimental or numerical data, which
is unpleasant. We will return to this point in the following when discussing the DFT
approach tometastable glasses.Wewill see that, whileDFT needs extensive tuning to
work well, the RFOT-based state following construction enables us to get predictions
from first principles, at the only price of an Hamiltonian.

2.2.2 Frustration Limited Domains

According to the Frustration Limited Domains (FLD) [83] picture, the fingerprint
of glassiness is disorder and the amorphous nature of the glass phase, which is
rationalized as a consequence of geometric frustration. Frustration can be broadly
defined as the incompatibility between a locally preferred arrangement, and the
symmetry of the space it finds itself in, thereby rendering the local structure incapable
of tiling the whole space forming a global periodic structure.
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A pedagogical example is a triangle of spins with anti-ferromagnetic interactions:
the local preferred structure would be a +1 spin and a −1 spin at the end of each
bond, but the triangular topology renders this arrangement impossible: at least one
bond is not satisfied (which means that the relative energy cannot be minimized), and
as a result there are three possible (and equivalent) optimum frustrated arrangements.
This example illustrates how the frustration is caused by geometry: on a square lattice,
there would have been no problem. Moreover, it also illustrates how frustration is
also a source of degeneracy andmultiplicity, an important ingredient in the context of
amorphous materials. This ideas can also apply to particle systems. It is for example
known that the local preferredorder for packings of spheres ind = 3 is the icosahedral
one, which is however incompatible with periodic ordering [84].

According to FLD, the glassy slowdown is a manifestation of a second-order
critical point at a certain temperature T ∗ > Tm , which is destroyed by frustration
[85]. When the liquid is cooled down, it starts to form locally preferred structures
(LPS) in preparation for the transition at T ∗, but those structures are incapable of
tiling the whole space due to frustration, so they end up forming domains of size
ξ separated by topological defects, where a surface tension will be located due to
the mismatch. The rearrangement of these domains, not much differently from what
happens in themosaic picture, will then have to proceed by activation [85], producing
a slowdown of the dynamics like the one observed in glass formers [86].

2.2.2.1 Models

The scenario suggested byFLDcanbe implemented in statistical-mechanicalmodels.
A particularly elegant realization in the case of spheres is the one proposed byNelson
[87]: the idea is to embed the spheres in a spherical manifold with d = 3, in such
a way that the local icosahedral order is now compatible with extension in space.
The energy of the system can then be minimized and a “reference” configuration
obtained. The curvature of space is then reduced, up to the point when the euclidean
flat space is recovered. This way one can observe how the ordered configuration
on the sphere changes to a disordered configuration rife with FLDs, separated by a
complex network of defects. However, this approach is also technically very hard to
implement and it is almost impossible to get quantitative predictions [1].

There are two other possible ways: either a phenomenological scaling treatment,
like the one implemented in [85], or coarse grained lattice models. The Hamiltonian
of such models is always made up of two terms: one that reproduces the unfrustrated
system and yields the second-order transition at T ∗, and another which acts as a
source of frustration. A paradigmatic Hamiltonian is

H = −J
∑

〈i j〉
Si S j + Q

∑

i �= j

Si S j

|xi − x j | , (2.37)
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where we can clearly see the competition between ferromagnetic, local interaction
(which will tend to favor local ordering) and the long-ranged Coulombic interaction
which acts as a frustrating term. Models of this sort can be defined with soft spins,
Ising spins, O(N ) spins and Potts variables. In the case of O(N → ∞) and soft
spins one can see that the transition is killed as soon as Q �= 0 [88], while in the
case of Ising spins the transition becomes first order [89]. Anyway, in both cases, a
disordered phase is found at low T wherein dynamics is slowed down in a glassy
manner [83]. The size ξ of FLDs in particular is found to have the scaling

ξ 	
√

J

Q
ξ−1
0 , (2.38)

where ξ0 is the correlation length of the avoided transition at T ∗. Since it decreases
as the system is cooled below T ∗, the size of FLDs is found to increase on lowering
T , which in turn means that the barrier to rearrangement of the FLD must increase
upon supercooling. So FLD theory passes the test as RFOT and DFT, since it does
provide a good explanation for the super-Arrhenius increase of the relaxation time.

We can also observe from the (2.38) that more frustration means smaller FLDs.
This is reasonable, since frustration keeps the FLDs from tiling the whole space,
so having more of it should correspond to smaller domains. This in turn implies a
direct relation between fragility and frustration, which is probably the most original
prediction of FLD theory. As a result, FLD can account for a wide range of different
behaviors, from strong to fragile, just by tuning suitably the strength of frustration.

2.2.2.2 Strengths and Weaknesses

FLD theory has the great merit of actually posing deep questions about the nature of
cooperative regions seen in glassy systems. RFOT just postulates them as originated
by an underlying disordered FEL, and DFT only focuses on how they move. FLD
instead describes them explicitly, in a very practical and very grounded way, and
proposes a coherent and elegant picture for their origin. FLD has also the merit of
bringing back the attention of researchers on a fact so obvious it is often forgotten:
glasses behave like solids, and the rigidity of solids is indeed due to structure, not
dynamics, so perhaps it is too soon to rule out the existence of any structure in glassy
materials: they may actually hide more order than we think (see for example [90]).

This grounded and real-space bounddescription of FLD theory is, however, also its
weakness: as of now there have not been any direct observations of FLDs [1, 19]. We
have focused before on how the static structure factor S(q) does not seem to capture
anything unusual on crossing Tg , although the fragmentation in FLDs could be so
severe that the residual order eludes a bulk tool like the S(q). In principle it could be
possible to observe FLDs and their related LPSs through numerical simulations, but
this is more complicated than it looks [91], and there is not even agreement on which
is the locally preferred order one should look for. For example in [92], the growth
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of icosahedral order is found to be more pronounced in fragile liquids as expected
from the FLD approach, but in [93] it is argued that everything can be understood in
terms of bond-orientational order, rather than icosahedral, so that the situation looks
very convoluted.

Moreover, one would also appreciate to go beyond scaling arguments and coarse-
grained models like the one defined in Eq. (2.37), and perform calculations onmicro-
scopic models of glass formers, but this does not look easy. It is indeed possible to
implement numerically a Nelson-like treatment for a Lennard-Jones mixture [94]
with very encouraging results, but at present there is no apparent way of translating
this into a statistical-mechanical calculation. As a matter of fact, models like the one
in Eq. (2.37), when treated with the replica method, show a Kauzmann transition like
the one predicted in RFOT (see for example [95]), so it could very well be that a
first-principles treatment of FLD will end up giving back RFOT results, which could
be a very interesting turn of events.
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Chapter 3
Metastable Glasses

In this chapter we focus on the glassy branches in Fig. 1.1, when our glass former
is frozen, for a time τα, in an amorphous solid called a glass. We will mainly focus
on two different experimental designs: in the first one, the preparation of the glass is
followed by a waiting time during which the glass is left at rest to age, followed by
experimental measurements of its thermodynamic properties; in the second one, the
glass is prepared and then subjected to an external mechanical drive, during which
its response to the drive is characterized. In both cases we will present the usual
phenomenology as observed in simulations and experiments, and also the theoretical
tools up to now used to approach the problem. The aim of this chapter is to detail
how glasses, despite being out of equilibrium systems, are anyway long-lived states
of matter endowed with well defined physical properties, that can be measured and
hopefully computed from a first-principles theory.

3.1 Thermodynamics and Aging

In the preceding chapter we have discussed the properties of glass formers, as
observed in experiments and simulations designed in such a way that

texp � τα,

on a range of temperatures which goes roughly from TK (we do not care if TK is
zero or not) to TMCT . This range of temperature corresponds to the one wherein
the glassy slowdown takes place, and phenomenology beyond the one observed in
simple liquids can manifest.
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In this chapter, on the other hand, we talk about glasses. This means that the
typical experiment/simulation will be designed so that

τβ � texp � τα.

Let us be more specific, and perform an idealized experiment of length texp on a
glass former. The simplest possible experiment consist of at least two phases: first
a preparation of the sample, which takes a time tprep, and then a measurement of
some sort, carried out at texp. The time that elapses between the end of preparation
and the experimental time will be called the waiting time, and denoted as tw. The
simplest preparation protocol one can consider is a very rapid quench of the glass
former down to a target temperature T , TK < T < TMCT [1]. This is actually the
process by which glasses are canonically made, and we will refer to such procedures
as quenching protocols; however, one could also consider more creative protocols.
For example, one could equilibrate the glass former down to a temperature T f ,
TK < T f < TMCT (the notation will be clear later), then quench it rapidly down to a
target temperature T [2] and perform measurements. Such a protocol will be referred
to as an annealing protocol.

To equilibrate the system at T f , one can choose any convenient protocol; the most
straightforward one is a step-like quench down to T f , after which the sample is left
at rest until equilibrated. The annealing time needed for such a protocol is then

tann = τR(T f ) = τ0 exp

(
A

Tf − T0

)
(3.1)

so it obviously grows very rapidly with T f . Of course, in a real laboratory it is impos-
sible to achieve infinite quench rates (the thermal conductivity of any substance is
finite) and more complicated protocols could be needed in order to avoid crystalliza-
tion [3], but since the sample is equilibrated at T f , the actual protocol used does not
matter: the system loses memory of its history once equilibrated and its properties do
not depend on time, a situation referred to as Time Translational Invariance (TTI), as
we already discussed [4]. Once the annealing phase has been completed, we quench
the glass down to T , a process which will take a time tqu such that tann + tqu = tprep,
and then wait a time tw before performing our measurements. After t = tann the
system is out of equilibrium, so from T f downward its equation of state will deviate
from the supercooled liquid one as shown in Fig. 1.1: T f is the temperature where-
upon the system forms a glass. This temperature has been defined by Tool in [5]
and called the fictive temperature. In any reasonable experimental setting it is practi-
cally equal to the glass transition temperature Tg, so we will consider them as being
interchangeable from now on.

One can easily understand the difference between the two protocols we described
in light of the summary of RFOT we made in Sect. 2.1.4: in the first protocol we do
not let the system equilibrate in any way, so it remains arrested in the threshold states
in the highest regions of the FEL (corresponding to f = fth such that �( f, T ) is

http://dx.doi.org/10.1007/978-3-319-60423-7_1
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maximized1), and will still be there when we perform our measurement at texp, unless
the waiting time is very long. In the second protocol, the system remains anyway
blocked in the threshold states, but then we give it enough time tann � τR(T f ) to
descend in the FEL (thanks to activation), down to the equilibrium states with f = f ∗
determined by the condition (2.25) with T = T f . This way, when we will quench
it again down to T , the system will remain trapped in one of the equilibrium states
selected at T f , and again, it will still be there when we perform our measurements
at texp.

In summary, having a lower temperature T f (and thus a longer protocol) means
that the phenomenology observed at texp will be ruled by deeper and deeper minima
in the FEL.

3.1.1 Protocol Dependence

From the description we just gave of the simplest protocols for glass preparation, the
reader can immediately understand that glass is an intrinsically out of equilibrium
object. In practical terms, this means that a typical glass has not had enough time
to forget its history and so the properties measured at texp can depend, in principle,
both from the preparation protocol, and on the time that has passed between the end
of preparation and the measurement. In summary, any measurable observable O can
depend on tann , tqu and tw, and on the details of whatever happened during these time
periods.

We already said that the dependence on tann is no big deal: the system is left at rest
until equilibration sets in at T f (or Tg), so it has forgot all its past history, including
the annealing protocol employed to get at Tg , which is effectively the only trace left
of the past history of the glass. The dependence on tw is very weak as well, at least
for one-time observables: in the case of quenching protocols, power laws with small
exponents or even logarithmic laws, such as

O(tw) = O∞ +
(

τ0

tw

)α

, (3.2)

O(tw) = O∞ + log(1 + τ0/tw), (3.3)

are usually reported [1]. The dependence should be even weaker for the annealing
protocols that reach deeper and more stable states in the FEL. This also implies that
the dependence on tqu is as well weak: a rapid quenching protocol followed by a
long waiting time is the exact same thing as a long quench followed by a short tw.

1Technically, the definition of threshold state it that of a minimum which is infinitesimally near
to being a saddle. However, it is reasonable that such stationary points will be in the highest
part continuous of the FEL (ridges are always located higher than valleys) and thus have maximal
complexity, as long as the complexity is a monotonously increasing function of f . If these conditions
are met, the identification between threshold and maximal complexity is safe (and is rigorously true
in the PSM).

http://dx.doi.org/10.1007/978-3-319-60423-7_2
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Fig. 3.1 The intermediate scattering function of a prototypical glass former after a quenching
protocol, in an aging situation. We can see how the relaxation time τ0 increases when the waiting time
increases, a typical aging effect. A quasi-equilibrium regime is observed at small times. Reprinted
figure with permission from [6]. Copyright (2011) by the American Physical Society

In summary, the properties measured in a glass annealed at a temperature Tg and
then quenched at a temperature T do not depend much on the protocol needed to get
from Tg to T ,2 and only depend on the temperature Tg (or equivalently T f ), and on
tann through it:

O(tw, tann, tqu) −→ O(Tg, T ).

which was indeed Tool’s original idea for T f [5]. Despite the fact that a glass is not
at equilibrium, its one-time properties are effectively independent of time (at least
until it relaxes again on an impossibly long timescale τα(T )): it actually makes sense
to talk about a thermodynamics of glasses.

To detect actual signatures of aging, one must focus on two-time quantities, like
the already mentioned dynamical correlation functions. In an out of equilibrium,
aging scenario, they will depend on both times t and t ′

C(t ′, t) −→ C(tw, tw + τ ). (3.4)

In Fig. 3.1 we show a typical aging-like relaxation pattern for the dynamical correla-
tor, plotted for various waiting times after a quenching protocol. At small times the
curves are almost superimposed and the dependence on tw is weak, so that TTI is
restored. At longer times, a stronger dependence on tw is observed, and the correlator
decays to zero on a timescale τ0 which depends strongly on tw. This dependence on
tw, which can also be seen as the age of our glass, is the definition of aging [4, 6].

2This is true as long as the glassy metastable state the system is in does not undergo any further
in-state phase transition (like the minimum splitting in two or more sub-minima). We will see that
this is exactly the case with the Gardner transition.
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The fact that τ0 increases with tw may seem counter-intuitive: the system has
to eventually decorrelate on a fixed timescale τα(T ), so one would naively expect
τ0(tw) = τα − tw. This however is wrong: the system has first to relax inside a
steady state, and then decorrelate again. When tw = 0 is zero, the preparation of the
sample has just ended and the system has not yet had time to settle it its new state.
So when we observe it after an interval τ , is has decorrelated significantly as part
of this partial equilibration process. But if we wait a time tw, take a snapshot of the
system, and then take another at tw + τ , we will observe less decorrelation, since
part of the process has taken place before the first snapshot at tw: the more we wait,
the less decorrelation we observe, until at tw � τα the dynamics crosses over to the
equilibrium one where TTI is valid again, an interrupted aging scenario [4].

All this phenomenology seems well tailored to RFOT: at Tg, the system is at
equilibrium, visiting a great number of degenerate states whose free energy f ∗ only
depends on Tg through Eq. (2.25). When the system is quenched down to T , is has
not enough time to equilibrate again, but it can equilibrate inside the state with a
relaxation time of order τβ weakly dependent of the temperature, generating a TTI
dynamics on short timescales. After this, the system will stay equilibrated inside the
state and its observables will reach a restricted equilibrium value, independent of time
and dependent only on the thermodynamics (and so on T ) of the metastable state.
Of course, if the experimental time is comparable to τα, one can actually observe
aging effects, as the glass relaxes and its observables go back to their equilibrium,
supercooled liquid values. But this is possible only when T � Tg , very near to the
equilibrium line, so those effects are effectively negligible.

3.1.2 Ultrastable Glasses

The protocol dependence properties of glasses open exciting scenarios, wherein one
could manufacture materials whose physical properties could be “tuned” just by
changing their preparation protocol. However, such a program is not easy to realize,
at least until recently: the time tann needed to get a low Tg grows very steeply with
Tg (Eq. 3.1), so only a very limited range of Tgs is within practical reach. This is the
reason why the brutal quenching protocols like the one described at the beginning
of this chapter have been for much time the standard for studying glasses [1]: doing
better is very time-consuming and difficult.

However, in recent years, a new experimental and numerical protocol has allowed
researchers to get, in a few hours, glasses with Tgs that would correspond to canonical
preparation protocols up to decades long, allowing us to go much beyond TMCT . The
glasses so produced are fittingly called ultra-stable glasses [7–13].

Ultrastable glasses are prepared via a special protocol that goes under the name
of vapor deposition: the glass former is slowly deposited onto a substrate whose
temperature is controlled by a thermostat, and is of course lower that the calorimet-
ric glass transition temperature defined in Sect. 1.2.1. In such a setup, the particles
near the free surface enjoy enhanced mobility and are able to look for equilibrated

http://dx.doi.org/10.1007/978-3-319-60423-7_2
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Fig. 3.2 (Right panel): enthalpy for an ultrastable glass (blue), a glass with an annealing time of
15 days (green) and an ordinary glass produced by cooling the liquid at about 40K/min (black). In
a cooling scan, the enthalpies branch away from the liquid value at the fictive temperature T f , and

remain always higher than the liquid enthalpy (since Cgl
p < Cliq

p as we already mentioned). In a
heating scan, the enthalpy of the glass becomes lower than the liquid enthalpy, up to a temperature
Ton when the glass melts back into the liquid and the enthalpy regains its liquid value. Both T f
and Ton quantify the stability of the corresponding glass. (Left panel): heat capacity at the onset
transition. A maximum is observed, which separates the glass at low T from the liquid at high T .
Obviously Cgl

p < Cliq
p as expected. From [8]. Reprinted with permission from AAAS

configurations much faster than they would in the bulk of the sample, as it would
happen in a canonical annealing protocol. This creates, layer by layer, glasses which
are exceptionally stable and correspond to ordinary glasses with impossibly long
annealing times (around 40 years for some samples described in [8]). This procedure
can be implemented both in experiments [8, 12] and simulations [9, 11], and can be
shown to work well both for fragile and strong glass formers [12].

Once the sample has been prepared, it can be studied and characterized in a
variety of ways. In experiments, Differential Scanning Calorimetry (DSC) is usually
employed: heating and cooling scans are performed on the sample and its properties
(heat capacity at constant pressure and enthalpy in the case of [8]) are measured as
a function of T (see Fig. 3.2).

The cooling scans in the right panel of Fig. 3.2 correspond essentially to the
equations of state in Fig. 1.1: the enthalpy branches away from the liquid EOS at
a fictive temperature T f which depends on the preparation protocol. In addition to
this, one can also perform an heating scan, wherein the sample is prepared and then
(rapidly) heated up. In this case, hysteresis is observed: the enthalpy becomes lower
than the liquid one, up to an onset temperature Ton whereupon the glass melts back
into the liquid.

The stability of the glass is characterized by the two temperaturesT f andTon: lower
T f and larger Ton correspond to higher stability (and a larger hysteresis cicle). A lower
T f means that the glass is arrested in lower minima in the FEL, and correspondingly,

http://dx.doi.org/10.1007/978-3-319-60423-7_1
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Fig. 3.3 (Left panel): Average potential energy 〈U 〉 of the vapor-deposited glasses (red symbols) as
a function of the substrate temperature Ts , compared with the same observable for an ordinary glass
(blue symbols). The vapor-deposited glasses show supercooled liquid behavior (which means that
T f = Ts ) for temperatures much below the glass transition temperature for the ordinary glass, with
a lower limit at Ts � 0.3, about the value of TK for this system. In the inset, the inherent structure
energy is plotted as a function of Ts : a minimum is observed, again at T = 0.3, corresponding
to optimal substrate temperature. (Right panel): heating and cooling scans on glasses with three
different substrate temperatures, with T f = Ts for all the glasses, except for the one with Ts = 0.25
(as one can see in the left panel). Again an onset transition is observed, with Ton shifting up for
more stable glasses. All data are plotted in Lennard-Jones units. Reprinted by permission from
Macmillan Publishers ltd: Nature Materials [9], Copyright (2013)

more thermal energy must be supplied to the system to dislodge it from these minima
and melt it back into the liquid, yielding a higher onset temperature [8].

In numerical simulations [9], one has access to positions and momenta of all
particles, allowing a more refined analysis. In particular, the properties of the PEL that
underlies the liquid can be studied. Such a study can be carried out in the following
way: one takes an equilibrium configuration (essentially a set of 3N positions) of the
supercooled liquid at a certain temperature T below TMCT . One can then minimize
the potential energy of the liquid, using for example a gradient descent method
[3], using the equilibrium configuration as a starting point for the algorithm. This
procedure (which essentially corresponds to a sudden quench to zero temperature)
will produce a configuration corresponding to a minimum of the potential energy
(an inherent structure) with a certain energy Eis , which will be one of the minima
that the system typically vibrates around at temperature T [14]. As we mentioned in
Sect. 2.1.2, lower minima of the PEL can only be reached through activation, so they
correspond to larger annealing times and thus to higher stability.

In Fig. 3.3 we show some results from [9], for a glass produced by vapor deposition
in silico of Lennard-Jones particles: one can see that a lower substrate temperature
allows the system to reach lower minima in the PEL, as expected. This provides one
more way to quantify the stability of the glasses produced by vapor deposition. In
particular, the glass with the lowest Eis corresponds to an optimal substrate tempera-
ture approximately equal to the Kauzmann temperature for the glass former in study
[9], a very intriguing coincidence.

http://dx.doi.org/10.1007/978-3-319-60423-7_2
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In addition to this, one can also study the average potential energy 〈U 〉 as a
function of T , and perform cooling and heating scans similarly to [8]. Again, an
onset transition is observed, with higher Ton corresponding to higher stability as
expected.

In numerical simulations one can also study very precisely the structural prop-
erties of the glass, for example employing Voronoi tessellation. We do not delve
into the details, but we summarize that the more stable glasses do show structural
peculiarities, with a homogeneous (albeit always amorphous) structure almost totally
devoid of defects (such as polycrystallites), in contrast with ordinary glasses which
present bigger defects, and in larger number [9]. This is in agreement with the fact
that ultrastable glasses also show suppressed diffusion properties with respect to
ordinary glasses [8], another index of enhanced stability.

In summary, ultrastable glasses are certainly going to be studied more and more
in the next years: they are relatively easy to produce and allow researchers to bypass
annealing protocols which would be decades long, one of the big difficulties in the
study of the glass transition. Moreover, we mentioned in the introduction and in
Sect. 2.1 that most of the relevant predictions of theories of the glass transition are
found at temperatures much lower than TMCT , so that only experiments performed
at those temperatures, on an equilibrated glass former, can hope to unveil “smoking
gun” evidence in favor of one particular approach. Ultrastable glasses seem to give
a big help in this direction, so a new influx of experimental and numerical data from
their study is to be expected in the future.

3.1.3 The Jamming Transition

Let us now make a detour to talk about a phenomenon which at first glance is
completely unrelated to glasses: the jamming transition [15–17]. The aim of this
paragraph is to convince to reader that it is not at all a detour, at least within RFOT.

The jamming transition is probably one of the most ubiquitous phenomena one
can conceive. The canonical example of jamming system is a fistful of sand: when it
is not compressed, it responds to stresses by flowing, more or less like a liquid would.
However, if we clench our fist, at a certain point we will not be able to squeeze the sand
anymore and the response will be solid-like: the grains of sand are mechanically in
contact, forming an amorphous, tight packing. The jamming transition is a transition
between a loose, liquid-like system to a jammed, solid-like one.

This may look like a calorimetric glass transition, but it is not the same thing. In
the glass transition the solid that originates from the glass former is due to caging
and vibrations inside the cage, which render it capable of bearing loads and respond
like a solid; however, the system is still compressible and pressure is finite. In the
jamming case, there is no temperature and the solid-like behavior is due to the forming
of a network of mechanical contacts between the grains; and if those grains can be
reasonably modeled as mechanically undeformable, hard particles, the resulting solid
is incompressible: its pressure is infinite.

http://dx.doi.org/10.1007/978-3-319-60423-7_2
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To study jammed packings, one usually constructs them using a certain protocol
(the choice of words is not casual). In experiments, one can for example throw the
grains in a shaking box one at a time until the packing jams [18]. In simulations, a
very popular algorithm is the one by Lubachesky and Stillinger [19] (LS), wherein
the packing is created by inflating the spheres at a fixed rate γ during a molecular
dynamics run. Another possibility is to consider soft particles with a potential that
vanishes outside the particles (tennis balls, essentially): one starts from a random
configuration, compresses it, then minimizes the potential energy, and then com-
presses it again, until a zero energy configuration cannot be found anymore [20, 21].
The jamming problem can then be formulated as: “Given a procedure to construct
an amorphous packing, what are the properties of the packing so obtained? First of
all, what is its jamming density ϕ j

3? How does the contact network behave? Which
properties depend on the actual procedure, and which ones do not?”. A ponderous
research effort has ensued, in the last years, to answer these questions.

Luckily for us, this effort has been successful (see for example the reviews [22,
23]), at least for frictionless spherical particles, so we can reap and summarize the
most relevant results:

1. The jamming density ϕ j does depend on the protocol used. In the paradigmatic
case of the LS algorithm for hard spheres, it can be seen that a lower rate γ
corresponds to a lower ϕ j [24, 25]. In 3d, an fcc crystal is produced for small
rates (ϕ j = ϕFCC ≈ 0.74), while for a fairly large range of intermediate rates
an amorphous packing with ϕ j = ϕGCP ≈ 0.68 is produced.4 For even higher
rates, ϕ j goes down smoothly with γ.

2. All amorphous packings of frictionless particles at the jamming threshold ϕ j

are isostatic [26, 27], which means that the average number of contacts z in the
packing is just the one needed to ensure mechanical stability, ziso = 2d,5 in
agreement with Maxwell’s criterion [28].

3. The probability distribution of the absolute value of forces in a packing P( f ) ≡∑Nc
i=1 δ( f − fi ) (where Nc is the number of contacts) has a power-law behavior

(a pseudogap) for small forces, P( f ) � f θ, where the exponent θ is apparently
the same for every d ≥ 2 [29–31].

4. The pair distribution function g(h)[32], h ≡ (r −D)/D (where D is the diameter
of a sphere) is singular at small h: g(h) � h−γ , with the exponent γ again
independent of dimension [24, 29, 30]. Indeed a scaling relation can be derived
to link γ with θ [29, 33].

5. The Debye-Waller factor (or equivalently the MSD) of a packing of hard spheres
subject to agitation (like in the LS algorithm), and near the jamming threshold,
scales with the reduced pressure6 as � � p−κ [34, 35].

3ϕ is defined as the fraction of volume occupied by the particles, ϕ ≡ N
Vpar

V = ρVpar .
4We mention that this numerical estimate is subject to an error of about 10%, so caution is advised,
as always.
5d is the dimension of space.
6 p ≡ βP

ρ , where P is the pressure.
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6. The density of states (DOS) D(ω) of vibrational modes in a jammed packing
of spheres (soft or hard) has a plateau down to zero frequency [21, 36], a prop-
erty referred to as marginality. It can be shown that this property is intimately
connected with isostaticity, as the frequency ω∗ that delimits the plateau at low
frequencies can be shown to obey the scaling ω∗ � z − ziso [37]. This means
that the packing is mechanically stable (is in a stationary point of the PEL where
no negative modes can be found), but only marginally so: it can be destabilized
without paying an energy cost.

In summary, jammed packings surprisingly show properties with a remarkable
degree of universality, in the sense that they are both protocol-independent, and also
apparently independent of the dimension d of space as long as d ≥ 2. The isostaticity
and marginality of jammed packings point toward the fact that the jamming transition
may be a phenomenon governed by a critical point in the Landau sense (albeit at T =
0), with an associated set of critical exponents. As a matter of fact, a whole scaling
description of the jamming transition can be derived just by assuming marginality
[29, 33, 38]. Moreover, we point out the fact that these critical properties can be
measured and characterized very accurately, differently from what happens in the
case of glasses where no transition is present and everything is built around elusive,
subtle observables, like the complexity �.

What do jammed packings have in common with glasses? They have in common
the most important thing, namely the characteristic that makes them both hard to
approach theoretically: protocol dependence.

Glasses are protocol dependent because they are not able to equilibrate on human
timescales, while jammed packings are protocol dependent because they are athermal
systems made of macroscopic objects, such that the relevant energy scale is far above
kBT . In both cases, the system is unable to forget its history and treating it with the
usual tools of statistical mechanics is impossible. But at the end of the day, the
jamming problem (“Given a procedure to construct an amorphous packing, what
are the properties of the so obtained packing?”) and the glass problem (“Given a
protocol to produce a glass, what are the properties of the so obtained glass?”) have
the exact same nature, which is the reason why we put them in the same chapter.

The idea that the protocol dependence of glasses and jamming systems could be
treated on the same footing was first introduced in [16], where a unified phase dia-
gram was proposed, see Fig. 3.4. In this picture, jamming systems could be viewed
as glasses of repulsive particles7 quenched down to zero temperature and then com-
pressed until mechanically rigid. This would allow for a unified treatment of the two
problems.

Within the RFOT approach, the implementation of this program consist in iden-
tifying jammed packings with the endpoints of metastable glassy states at T = 0,
ϕ = ϕ j , and infinite pressure (see Fig. 3.5). This is more easily done in the cele-
brated hard sphere (HS) [32] model where temperature plays no role and the only
control parameter is the packing fraction ϕ, although it is possible to apply it also to
soft harmonic spheres. This approach to the jamming transition was first reviewed

7The presence of an at least soft-core repulsion is of course necessary to induce a jamming transition.
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Fig. 3.4 The proposed
unified phase diagram for the
glass and jamming
transitions. Reprinted by
permission from Macmillan
Publishers ltd: Nature [16],
Copyright (1998)

in [39], and allows one to treat jammed packings in a purely static fashion, thanks to
the static nature of metastable glassy states which is at the very heart of RFOT.

In last few years, this line of research has produced remarkable results. It was
shown in particular that the HS model could be solved exactly in the infinite dimen-
sional, MF limit d → ∞ [40], employing the replica method which is the natural
tool for treating RFOT models [41, 42] (more on this in the following), and that this
exact solution could accurately predict the critical exponents γ, θ and κ along with
the isostaticity property of packings [35, 40, 43, 44]. All these results were obtained
only from first principles and to this date embody the greatest accomplishment of
RFOT, showing that the initial conjecture of Kikpatrick, Thirumalai and Wolynes
[45–49] is indeed realized in a strong sense in the MF limit.

Since the jamming transition and the RFOT predictions about it concern the prop-
erties of metastable glassy states at infinite pressure, we are going to talk more, and
with more detail, about them in the following.

3.1.4 Theoretical Approaches to Aging

As we mentioned in the previous paragraph, a satisfactory “theory of aging” must
be able, given a certain preparation protocol, to predict the properties of the glass so
produced. Since a glass is out of equilibrium, using standard statistical mechanics
would only give back trivial results relative to the equilibrated supercooled liquid,
which means that one must in principle resort to off-equilibrium dynamical tools. In
this case, to predict the properties of an aged glass, one must

1. Write the equations for the dynamical process that reproduces the protocol under
consideration,
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Fig. 3.5 (Left panel): pressure versus packing fraction phase diagram of hard spheres as proposed
in [39]. The slowest compression rates lead to a crystalline packing with maximal density ϕFCC .
Higher, but still fairly low rates allow one to go into the “supercooled” regime all the way down
to the Kauzmann transition, and then to ϕGCP which is the jamming point for the ideal glass
and corresponds to the maximal density for an amorphous packing. Higher rates select a glassy
state between ϕd (analogous to TMCT ) and ϕK in analogy with an annealing protocol for a glass,
and these states have jamming densities in a continuous interval between ϕth = ϕ j (ϕd ) and
ϕGCP = ϕ j (ϕK ). Reprinted figure with permission from [39] Copyright (2010) by the American
Physical Society. (Right panel): specific volume versus temperature phase diagram of a generic
glass former. The similarity with the left panel is manifest if one identifies 1/ϕ = v and P = 1/T .
Reprinted figure with permission from [50]. Copyright (2006) by the American Physical Society

2. solve them and compute the values of observables from the solution.

Specifying to our case, in the case of brutal quenching protocols [1] one needs to
study a dynamical process starting from a random initial configuration, while in the
case of the annealing protocols (like those employed for ultrastable glasses) [2] one
must consider a dynamics starting from an initial configuration equilibrated at T f

[4].
This program does not look easy, especially considering the fact that a theory

for the dynamics of glass formers is still lacking. MCT is by construction a theory
for equilibrium dynamics, so it cannot be employed in this setting, and the recently
proposed MF approach of [51] is still in its infancy. Nevertheless, something has
been done, and we review briefly those efforts.

3.1.4.1 RFOT

We mentioned in Sect. 2.1.2 that the MCT equations are formally identical to the
equations for the equilibrium dynamics of the PSM [52]. However, while the MCT
equations are derived assuming equilibrium ab initio, in the case of the PSM the
derivation is completely general, which means that so obtained dynamical equations
have general validity and can be employed for aging studies.

http://dx.doi.org/10.1007/978-3-319-60423-7_2
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Those equations read [52]

∂C(t, tw)

∂t
= μ(t)C(t, tw) + 2T R(tw, t) + p

2

∫ tw

−∞
dt ′ C p−1(t, t ′)R(tw, t ′)(3.5)

+1

2
p(p − 1)

∫ t

−∞
dt ′ R(t, t ′)C p−2(t, t ′)C(t ′, tw),

∂R(t, tw)

∂t
= μ(t)R(t, tw) + δ(t − tw) (3.6)

+1

2
p(p − 1)

∫ t

tw

dt ′ R(t, t ′)C p−2(t, t ′)R(t ′, tw),

μ(t) = T + p

2

∫ t

−∞
dt ′ C p−1(t, t ′)R(t, t ′), (3.7)

where the correlation function C and response function R have been defined

C(t, tw) ≡ 1

N

N∑
i=1

〈σi (t)σi (tw)〉 R(t, t ′) ≡ 1

N

N∑
i=1

δ〈σi (t)〉
δhi (t ′)

, (3.8)

(hi (t) is a space and time dependent perturbing magnetic field) and (•) denotes an
average over the quenched disordered couplings [52]. In an equilibrium situation, the
correlation and response functions are linked by the fluctuation-dissipation theorem
(FDT) [4]

R(t, tw) = 1

T

∂C(t, tw)

∂tw
, (3.9)

while in an aging situation they have to be treated separately. The solution for these
equations in the aging regime was first described in [53] and is reviewed in great
detail in [4], so here we just summarize the most relevant points.

The solution exhibits an aging phenomenology just like the one reported in
Fig. 3.1: at short times τ = t − tw, the dynamics is TTI and the FDT holds. On inter-
mediate timescales the dynamics remains arrested around a plateau whose height can
be shown to be equal to the “size” of the threshold states at temperature T [53], after
which the system then decorrelates on a timescale τ � τ0(tw). However, one can
also observe that the length of the plateau τ0(tw) increases indefinitely with tw, so
that the system is effectively aging forever and the dynamics never crosses over to an
equilibrium one (which would require that τ0(tw) saturate to a tw independent value,
restoring TTI). This is no surprise, since the system needs activation the leave the
threshold level in the FEL, which is forbidden by construction in the PSM. In fact,
the aging dynamics of [53] corresponds to the slow descent of the system towards a
threshold minimum in the FEL [54], which however is reached only asymptotically
in tw. The system descends effectively forever, moving along ridges and visiting sta-
tionary points with a lower and lower number of unstable directions, thereby slowing
down more and more as time passes, causing the increase of τ0 with tw.
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The most relevant prediction of the aging dynamics defined above consists in the
fact that, on timescales much larger that tw, a generalized version of the FDT holds
[53]. One can define a fluctuation-dissipation ratio (FDR) in the following way [6]

R(t, tw) = X (t, tw)

T

∂C(t, tw)

∂tw
. (3.10)

This can be done in general, but in MF spin glass models like the PSM, one can
observe that

X (t, tw) � x(C(t, tw)) (3.11)

where x is a generic function. Since in the case of the PSM (and RFOT systems in
general) the decay of the correlator is two-step, the function x effectively reduces
to two numbers: x = 1 when C is large and both TTI and the FDT are valid, and
x = X∞ when C is small and decorrelation sets in. This invites us to define an
effective temperature

Teff = T

X∞
, (3.12)

so that the aging system can be visualized as a system at equilibrium, only with a
temperature Teff different from the bath temperature T [55, 56].

To measure the FDR, one can define a susceptibility

χ(t, tw) ≡
∫ t

tw

dt ′ R(t, t ′), (3.13)

which together with the (3.9) would imply

Tχ(t, tw) = C(t, t) − C(t, tw), (3.14)

so that a plot of χ(t, tw) versus C(t, tw) is a straight line with slope −1. If the FDT
is not valid, but an effective temperature can be defined, one would expect to see
a slope of −X∞ when C is small. This prediction has been validated in numerical
simulations of realistic models of glass formers, see for example [57, 58] and Fig. 3.6.

The temperature defined through the (3.10) can be shown to have a lot more
physical meaning that one could assume at first sight. In particular, it can be shown
to possess all the properties required from a temperature as a state variable: it can
be measured with a suitable thermometer and controls the direction of heat flows,
as a “real” temperature is supposed to do [55]. Moreover, a whole thermodynam-
ics for metastable glasses can be in principle built around the concept of effective
temperature, see [59].

The presence of an effective temperature is intimately linked with the presence
of two relevant timescales for equilibration: the fast degrees of freedom are able to
equilibrate (on a timescale τβ), with the bath at temperature T , but the slow degrees
of freedom are unable to do so since their equilibration time τα is too large. However,
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Fig. 3.6 Susceptibility versus correlation plot for a simulated SiO2 glass. For large times, the
numerics for both atomic species converge smoothly to a two straight-line plot with X∞ ≈ 0.51,
which yields Teff ≈ 4900K . Reprinted figure with permission from [6]. Copyright (2011) by the
American Physical Society

they can be conceived as “quasi-equilibrated” at Teff [60]. We will see that the replica
method allows one to give more solidity to the notion of effective temperature.

This effective temperature approach has been for much time the standard RFOT
approach to aging (we refer to [61] for a review), but it clearly suffers from some
problems. First of all, not all experiments reveal the presence of a well-behaved
effective temperature (see for example [62]), and we will also see that the pres-
ence of activation mechanisms can lead to negative effective temperatures, a clearly
paradoxical result.

However, the biggest weakness is of conceptual nature: since activation is prohib-
ited, the system is always and forever stuck at the threshold level, without ever being
able to penetrate below it. This means that this kind of dynamics is only capable
of reproducing brutal quenching protocols, and fails completely when one tries to
describe annealing protocols such as the ones we defined in Sect. 3.1. A satisfactory
theory of aging must be able to account for those protocols and the appearance,
in recent years, of ultrastable glasses analogue to glasses prepared with very slow
annealing protocols [8, 9] now makes it even more of a mandatory task, for models
and theorists, to go “beyond the threshold” [4].

Since within RFOT the system cannot go beyond the threshold by itself, we must
put it there ourselves, namely we must consider a dynamics whose initial configu-
ration is not random, but sampled from the canonical Boltzmann-Gibbs distribution
at T f . This program can actually be implemented in the case of the PSM, wherein
the equations for such a dynamics have been derived in [63]. Their solution shows,
unsurprisingly, an equilibrium dynamics (with FDT and TTI both valid) much like the
MCT one, with the only difference that the system relaxes inside a single metastable
state selected by the (2.25) instead of equilibrating in the ergodic supercooled liq-
uid. The system of course never gets out (since activation is forbidden), so one has

http://dx.doi.org/10.1007/978-3-319-60423-7_2
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a well-defined plateau regime for long times, from which the interesting in-state
observables can be computed.8

This is exactly what we want, but anyway there is a problem, namely that imple-
menting the program of [63] in real liquids looks like a difficult task. In principle a
generalization of the formalism employed in [51] could be developed, but it doesn’t
look at all easy, since the derivation of [51] for just an equilibrium, MCT-like dynam-
ics is already quite computationally heavy. In this thesis we propose a much simpler,
but equally predictive alternative.

3.1.4.2 DFT

The aging dynamics of KCMs has been extensively reviewed in [65], so we will be
brief. As we mentioned before, they have the big advantage of being well defined
models which can be treated analytically and have a real space structure, and yet
exhibit a remarkably rich phenomenology. In particular, they provide an ideal play-
ground to study activation mechanisms.

The possibility of activation in the dynamics of KCMs can lead to very interesting
results in terms of FDT violation. The case of the FA model, Eq. (2.36), in particular,
has been extensively studied [66]. The dynamical correlations considered in the FA
are the Fourier transforms of the local mobility correlation functions

Cq(t, tw) =
∑
i

∑
j

〈
ni (t)n j (tw)

〉
c e

−iq(ri−r j ). (3.15)

That for q = 0 correspond to the dynamical correlation function of the energy [66]

C0(t, tw) ∝ 〈H(t)H(tw)〉c . (3.16)

Remarkably, the structure of FDT violations is again found to be very simple. In
particular, one has, for d > 2 and q = 0, a well-defined long-time FDR X∞,
see Fig. 3.7. Notice how the FDR depends on the wave-number (and thus on the
lengthscale) considered, an effect which could not be observed in MF models where
space plays no role. Unsurprisingly, to find a well defined FDR one must consider
the q = 0 limit, corresponding to global observables.

However, one can see from Fig. 3.7 that

X∞ = −3,

for every d ≥ 2. This yields a negative effective temperature, quite a paradoxical
result.

8The quenching and annealing dynamics can be treated in a unified manner within the dynamical
TAP formalism, see [64].

http://dx.doi.org/10.1007/978-3-319-60423-7_2
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Fig. 3.7 Susceptibility versus correlation plots for the FA model in d = 3. Symbols are numerical
data while lines are theoretical calculations. Wave-numbers decrease from top to bottom, with the
bottonmost corresponding to q = 0. A negative FDR is observed. Reprinted figure with permission
from [6]. Copyright (2011) by the American Physical Society

Despite being apparently paradoxical, a simple argument [66] shows that this
behavior is indeed to be expected, due to the possibility of activation. As we said
before, the C0(t, tw) is related to the fluctuations of the energy, whose conjugated
variable is temperature. If one raises the temperature of the system, the timescale
for activation goes down following Arrhenius’ law, Eq. 1.5, speeding up relaxation
and allowing the system to descend in the PEL. So the response of the energy to
a temperature step is negative, causing the negative FDR observed in [66]. This
example shows how the effective temperature is a MF-bound concept, and how it
may not be viable for the description of aging in real glassy systems (especially
strong ones) wherein activation is expected to play a role. This view is corroborated
by the fact that relaxation mechanisms of KCMs seem to be a lot more mean-field
like for more “fragile” KCMs, like the East Model [67]. In that case it can be seen
that the relaxation proceeds in a step-like manner with multiple time sectors, each
of whom can be associated to an effective temperature [65], as argued in [60].

Besides the description of activation mechanisms, Dynamical Facilitation Theory
can also well describe the properties of glasses in the plateau regime. In particular,
it has not remained silent after the appearance of ultrastable glasses: in [68], the
non-equilibrium dynamics of the East model for a cycling temperature protocol is
studied, with the express purpose of reproducing the results of [8] (in particular
the left panel of Fig. 3.2) and DSC experiments in general. A very good agreement
between theory and experiment is found, but we warn that this comes at a price: a
rigorous mapping between actual glass formers and KCMs is still lacking, so to obtain
such a result the East model must be “tuned” suitably. In particular, the values the
energy scale J for mobility, the onset temperature T0 whereupon the glassy slowdown
starts to manifest, the microscopic relaxation time τ0 and the fractal dimension of
heterogeneities d f must all be fixed by hand, either from reversible transport data [69]

http://dx.doi.org/10.1007/978-3-319-60423-7_1
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or from atomistic simulation results; and even at that point, an additional optimization
over one remaining free parameter is required [68].

In summary, KCMs do have a more true-to-life nonequilibrium dynamics with
respect to the RFOT approach, but they also suffer from their nature of effective mod-
els, whose physics is imposed from the outside instead of being derived from first
principles. Our state following approach, by contrast, can produce qualitatively accu-
rate results starting just from the microscopic interaction potential of a glass former
of choice, without the need for phenomenological arguments or scaling treatments.

3.2 Driven Dynamics and Rheology

After a glass has been prepared, one can of course do a lot more than just let it
age. Namely, one can also perturb the glass with some external drive and measure
its response to such a drive. There is no shortage of drives one could supply to a
glass: electric currents, electromagnetic fields, scattering particles etc., but here we
are concerned with mechanical drives, the simplest being shear strain. The study
of the rheology of glasses, especially for low temperatures deep in the metastable
glass phase (T � Tg), ties with the study of mechanical response and plasticity in
amorphous solids in general (see for example [70–75]) and also in pastes, foams,
colloids etc. [76], so it goes without saying that it is a field relevant for multiple
engineering and material science applications.

Since we are focusing on glasses, which are solids, let us consider a cube of glass,
and apply a shear displacement on its topmost face, along the x-axis. Every point x
in the cube is transformed in another point x′ the following way

x ′ = x + γy,

y′ = y, (3.17)

z′ = z,

Where γ = �x/L , i.e. the displacement of the topmost face divided by the side L
of the cube. The difference x′ − x is a vector field, called the displacement field [76]
and denoted as u(x). One then has

∂ux

∂y
≡ γxy = γ (3.18)

where γαβ
9 is the strain tensor. Such a shear geometry is referred to as simple shear,

and corresponds to the simplest possible structure of the strain tensor

9In the following we will denote space directions with Greek indices α,β, γ, δ . . . and particles
with Latin indices i, j, k . . . .
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γαβ =
⎛
⎝0 γ 0

0 0 0
0 0 0

⎞
⎠ (3.19)

Of course, one could apply deformations in many different ways, each corresponding
to a different choice of shear geometry (a very popular one is the Couette geometry
[77]) and more complicated displacement fields, which in turn requires a full tensorial
description of the strain [76], but in this thesis we focus on simple shear.

If our material is a solid, we reasonably expect from it an elastic response when
the shear is small enough: the material responds to the displacement with a shear
stress10 proportional to the strain [76]

σxy = σ = μγ, (3.20)

which is essentially Hooke’s law cast in a shear-strain setting. The quantity μ is called
the shear modulus or elastic modulus.

All these relations are valid at equilibrium. To be general, and remembering the
discussion of Sect. 1.2.1 and [79], we can include time into the description and write

σ(t) = G(t − t ′)γ, (3.21)

where t ′ is the time whereupon the strain is applied, and we have defined a response
function G(t). With this definition we can treat both fluids and solids: in a fluid, the
G(t) will vanish after some time (intuitively, the relaxation time τR) and the fluid
will absorb the stress (think of honey), while for a solid one will have a nonzero limit
for large times, limt→∞ G(t) = μ.

Let us now assume that we perform an experiment with time-dependent strain.
We approximate this strain as formed by a succession of strain steps, each one at a
time ti , δγ(ti ) ≡ γ(ti+1) − γ(ti ), so that

σ(t) =
∑
i

G(t − ti )δγ(ti ) �
∑
i

G(t − ti )γ̇(ti )δti (3.22)

which in the continuum limit becomes

σ(t) =
∫ t

0
G(t − t ′)γ̇(t ′)dt ′, (3.23)

where γ̇(t) is the strain rate. This relation was derived in the elastic, low-strain
limit, and fittingly has a strong linear response flavor. In the general case, the stress
response will be a more complicated functional of the shear rate

10In reality, the independent variable is actually the stress (essentially the force we supply to the
material), and the displacement (essentially the strain) depends on it. Most simulations are however
performed under strain control, although stress control can in principle be employed, see for example
[78].

http://dx.doi.org/10.1007/978-3-319-60423-7_1
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Fig. 3.8 The most common
models of flow in fluids and
plastics. Plastics
(Herschel-Bulkley and
Bingham) are distinguished
by the presence of a yield
stress σY , namely a finite
level of stress that must be
supplied to the system in
order to observe flow, while
fluids flow for any value of
the stress

Herschel-Bulkley

Bingham

Power-law

Newtonian

Dilatant

σ(t) = F[γ̇(t)]. (3.24)

This last relation is called a constitutive equation. The aim of a rheology experiment
(theory) is to measure (compute) the constitutive equation for a given material, given
a shear protocol γ̇(t) [76, 77].

In the case of steady shear γ̇ = const in particular, one gets

σ(t) = γ̇

∫ t

0
G(t ′)dt ′, (3.25)

and the ratio of shear stress over shear rate is just the viscosity η, so in the long time
limit one has [76]

η = σ

γ̇
=

∫ ∞

0
G(t)dt. (3.26)

This linear relation is valid in the limit of small rates. In general the curve σ(γ̇),
called the flow curve, will have a non-linear form. See Fig. 3.8 for the most common
flow curves found in plastics and fluids [77].

The flow curve characterizes the rheology of the material in the long time steady
state [76]: for every value of the stress (essentially the force we supply to the material)
the flow curve tells us the shear rate (essentially the velocity of flow) obtained with
that stress. Most glasses and amorphous materials in general exhibit a Herschel-
Bulkley [77] flow curve, namely

σ(γ̇) = σY + K γ̇n, (3.27)

with an exponent n close to 1/2 [74, 80, 81]. Since the flow curve exists only for
σ > σY , a glass has a finite yield stress: it flows only when the stress is high enough
to deform it. For lower stresses, it responds elastically like a solid [71].

If then one remembers that η(γ̇) = σ(γ̇)/γ̇, we can see that glass formers typically
exhibit shear thinning: viscosity (and thus the relaxation time) goes down with the
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shear rate [76], a behavior common to a vast class of fluids [6]. Another model
with yield-stress behavior is the Bingham plastic [77], where n = 1 and viscosity is
constant.

3.2.1 Athermal Startup Shear Protocols

Most experiments and simulation on glasses employ a startup shear protocol, where
a simple shear strain is quasi-statically applied to the glass and the stress response
is measured, until the glass reaches the yielding point whereupon it starts to flow
steadily. Interestingly, the steady state usually depends only on the driving, which
means that the material has forgotten its history and aging has stopped, a process
referred to as rejuvenation [6, 82].

To be more specific, the glass is typically prepared by quenching an equilibrated
configuration down to zero temperature, dropping the system in an inherent structure.
Once preparation is complete, a strain is applied in small steps, either by implement-
ing a transformation like the (3.17) on particle coordinates, or by keeping the glass
former between two walls moving in opposite directions [71, 83]; in both cases,
the strain acts as an effective deformation of the PEL. After each step, the potential
energy is minimized and the system allowed to settle in a new inherent structure
(which may or may not be different from the initial one), before applying shear
again. Such a protocol is called an Athermal Quasi Static (AQS) protocol since ther-
mal fluctuations play no role and the system is allowed to equilibrate in the PEL after
each step (γ̇ → 0) [73].

The observed stress-strain curves are reported in countless publications and
reviews about AQS shear, see for example Fig. 3c of [71]. One can observe, for
small strain, a linear regime wherein response is elastic and a shear modulus can
be defined, followed by an overshoot in stress, and then a flowing steady state [71,
84]. The magnitude of the overshoot [71, 83] and the shear modulus [71, 85] both
increase when the quench is slower, which is reasonable: slower quenches correspond
to deeper minima in the PEL and thus more stability and rigidity. This qualitative
behavior is remarkably general [71, 73, 83]: it has been observed in systems that
range from polymer glasses [86] to colloidal gels [85] to metallic glasses [87]. More-
over, in granular materials a phenomenon referred to as dilatancy is observed: even
though shear strain transformations such as the (3.17) are supposed to preserve vol-
ume (and thus pressure), the pressure is found to increase quadratically with the
strain [88, 89].

The origin of the stress overshoot can be better understood if one looks more
closely at the stress-strain curves. We report such a “close up” in Fig. 3.9. One can
see that a typical AQS stress-strain curve is actually made up of short segments,
wherein the response is almost perfectly linear and elastic energy is loaded into
the material; these segments are separated by catastrophic events whereupon the
stress drops down sharply and energy is dissipated; these are called plastic events, or
avalanches. In a PEL perspective, one can visualize the elastic part as a deformation
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Fig. 3.9 Stress-strain curve
for a simulated system of
harmonic disks. In the inset a
“zoom in” is reported,
wherein one can observe that
the curve is really made up
of roughly linear, elastic
segments separated by
plastic events, or avalanches.
Reprinted figure with
permission from [73].
Copyright (2006) by the
American Physical Society
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of the inherent structure the system is in, which however maintains its identity. At
a certain point, the inherent structure opens up along an unstable mode, stability
is lost, and the system is kicked away, producing an avalanche until it finds a new
minimum.11 Interestingly, a stress overshoot is again observed at the end of elastic
segments [73].

In the elastic segments, the system “follows” the inherent structure in strain, so
the motion of particles will be generally made up of two contributions: the affine
transformation due to the strain and the nonaffine contribution necessary to track the
minimum and maintain mechanical stability [91]:

x′
i = xi + γ · xi + yi , (3.28)

where xi are the coordinates of particle i in the unstrained inherent structure, x′
i its

coordinates in the strained one, and yi is the nonaffine contribution. Stability within
the original minimum requires that the force on each particle i , fi = − ∂V

∂xi
be zero.

The nonaffine contributions can be worked out by requiring that the forces stay zero
when the strain is applied, with corresponds to imposing

d f i
dγ

= ∂ f i
∂γ

+ ∂ f i
∂x j

· d y j

dγ
= 0. (3.29)

Where the repeated indices are understood to be summed over. One can then define
two quantities

�i ≡ ∂ f i
∂γ

vi ≡ d y j

dγ
, (3.30)

11Such a process is referred to as saddle node bifurcation and is somewhat analogous to a spinodal
point. Indeed, one can describe it using a simple cubic theory wherein the potential energy of the
system is projected along the (almost) unstable mode, and interesting scaling predictions can be
obtained, see [90].
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called themismatch force12 and thenonaffine velocity, respectively [91]. Interestingly,
the nonaffine forces are nonzero only for amorphous inherent structure configurations
[91], so they can be used as a measure of disorder. With these definitions one can
solve for the nonaffine velocities:

vi = −H−1
i j · � j −→ viα = −H−1

iα jβ� jβ, (3.31)

where Hiα jβ is the Hessian matrix (or dynamical matrix), that we had already encoun-
tered in the context of jammed packings.

Once the nonaffine velocities have been determined, the coefficients of the elastic
theory [92] for the glass can be readily obtained. Their expression is

μn ≡ 1

n!
dn

dγn
σ({x(γ)}) = 1

n!
(

∂

∂γ
+ vi · ∂

∂xi

)n dV ({x(γ)})
dγ

. (3.32)

One can immediately observe that the presence of nonaffine velocities has no influ-
ence on the stress thanks to the minimum condition ∂V

∂xi
= 0. However it impacts all

elastic coefficients, in particular the shear modulus:

μ = ∂σ

∂γ
− �iαH−1

iα jβ� jβ = μa − μna, (3.33)

where μa is the Born term for a pure affine deformation [93], and μna is the nonaffine
contribution.

The presence of the shear overshoot can now be understood: a loss of stability is
by definition associated with the appearance of a zero mode13 in the Hessian matrix,
whose inverse appears in the nonaffine contribution in the (3.33). So the nonaffine
contribution will grow as the endpoint is approached, while the Born contribution
stays always finite: at a certain γ the shear modulus will be zero (and the stress-strain
curve flat) and then drop until it becomes infinitely negative at the endpoint, causing
the stress to go down in a steeper and steeper manner. The stress overshoot is thus
an inevitable consequence of the loss of stability.

This is valid for the small segments associated with a single inherent structure as
just described. In one wants to “coarse grain” this picture to the whole strain-stress
curve, then one may argue that a basin containing different inherent structures (called
a metabasin [94]) should replace the inherent structure, and then the yielding transi-
tion to the steady state would correspond to a loss of stability in the whole metabasin.
This picture is easy to grasp at a pictorial level, but it is obviously difficult to translate
in a theory: what does exactly mean that a metabasin loses its stability and opens
up? Is there a zero mode somewhere again, relative to the whole metabasin? Can one

12The mismatch force can be seen as the contribution of particle i to the shear stress, derived with

respect to its position, �i = ∂2V
∂γ∂xi

.
13Obviously the Hessian will always contain zero modes associated to symmetries, i.e. Goldstone
modes. But they can be identified and removed easily.
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define and compute the associated Hessian matrix? Does the loss of stability of the
metabasin imply a loss of stability for all the inherent structures therein contained?

We will see that these notions can be made more solid within replica theory.

3.2.2 The Yielding Transition

The transition between the elastic regime and the steady state is referred to as “yield-
ing transition” and has lately been the subject of extensive study (see for example
[83, 90, 95–97]). We already notice the fact that there is no clear definition for the
yielding transition (much like the glass transition, in fact). A rheology-bound defi-
nition would suggest to choose the maximum of the stress σY and its associated γY
as the yielding point. Others opt for a definition in terms of onset of energy dissipa-
tion (and consequently, avalanches) [98], or for a definition in terms of qualitative
changes in the structure of the PEL (namely, in the statistics of barriers between
inherent structures) after the transition [96], but there is no general agreement. Even
though it is evident, for example from Fig. 3.9, that there is a qualitative change in
behavior between the “elastic” regime and the steady state, it is not easy to pin the
exact point whereupon it happens.

In the next paragraph we will see that there are theoretical approaches that ensure
a good macroscopic description of yielding, in the sense that they do reproduce flow
curves (Fig. 3.8) with a yield-stress form. However, a “theory of yielding” has to to
do more, in the sense that it has to provide a good microscopic (or mesoscopic, at
least) description of the transition and the ensuing flow.

Nowadays, it is generally agreed upon that flow can be thought of as a sequence of
elementary, mesoscopic rearrangements that take place at well-defined points in the
sample, called Shear Transformation Zones (STZ) [99]. Such a shear transformation
will then induce a stress that will propagate elastically in the sample, in analogy
with the nucleation of an Eshelby inclusion [100], inducing other STZs in a cascade
and producing an avalanche. This picture is confirmed by a normal mode analysis
of the Hessian matrix: the eigenvector (which contains the particle displacements
associated with the mode14) of the critical mode associated with the instability shows
strong localization properties [101] and a quadrupolar angular symmetry [73, 102]
(see Fig. 3.10), just like the displacement field induced by an Eshelby inclusion.
Indeed, it has been argued in [101] that only low-lying localized modes contribute
to plasticity, in the sense that they are the only ones that can produce divergencies in
the coefficients of the elastic theory (3.32). This would exclude delocalized modes
such as phonons from the excitations relevant for yielding, a very strong assertion.

14If one writes the inverse Hessian in spectral form, H−1 = ∑
i

∣∣ψi
〉 1

λi

〈
ψi

∣∣, the solution for

the nonaffine velocities (3.31) becomes v = − ∑
i

∣∣ψi
〉 1

λi

〈
ψi

∣∣ �〉, so the nonaffine velocity is
dominated by the term proportional to the critical mode when the system is near enough to the
instability.
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Fig. 3.10 The (almost)
critical mode associated with
one of the instabilities (or
equivalently, stress drops) in
Fig. 3.9. The quadrupolar
structure is clearly
discernible. Reprinted figure
with permission from [73].
Copyright (2006) by the
American Physical Society

The idea that flow is initiated in definite points is not new. The mechanism for
failure in crystalline solids is indeed ruled by a population of topological defects,
known as dislocations [103], where structural failure manifests at the onset of flow.
Amorphous solids, however, lack an analogue of dislocations because of their disor-
dered nature, and as a result of this it is difficult (or perhaps impossible) to predict
where failure occurs [104]. Indeed, most research on yielding focuses on finding a
way to overcome this difficulty.

The first approach that comes to mind is a normal mode analysis of the Hessian,
in particular of the soft modes at lowest frequency [105]: from an intuitive point of
view, one would expect the perspective critical mode to be the lowest frequency one,
unless the instability is too far away. One could then identify the mode, extract from
it the polarization vectors of particles in the mode, and from it deduce where the
ST will occur. Sadly, it is not that simple, as the dynamics of the modes as strain
is applied is highly chaotic [105] and the critical mode coincides with the lowest
frequency one just for a small interval of strains before the instability [73].

Another difficult point is the phenomenon of shear banding, namely the tendency
of flow in amorphous materials to concentrate in well defined bands, leaving the rest
of the material unperturbed [6]. This phenomenon is of great relevance since it is
responsible for the brittleness typical of glasses: instead of deforming plastically, a
glass usually breaks, because the flow at the onset of deformation concentrates in
bands, producing fractures. This behavior seems to depend on the amorphous nature
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of the glass and not on its actual chemical composition: metallic glasses [106, 107],
for example, are usually brittle and have a strong tendency to shear band, while their
crystalline counterparts do not [71].

Shear bands are nothing but a special form of dynamical heterogeneity [108],
which points towards the fact that a real-space description is needed to characterize
them, like shown in [109, 110]. This however looks like a challenging task, especially
for MF-bound approaches like RFOT.

3.2.3 Theoretical Approaches

We conclude the chapter with a brief review of some theoretical approaches to glassy
rheology. A “perfect” theory or rheology, as we said before, would be a theory capable
of predicting the constitutive equation for a generic shear rate protocol γ̇(t), and it
goes without saying that such a program can be implemented only within a dynamical
approach. This is usually very difficult, although not impossible.

However, one does not necessarily have to consider time-dependent shear proto-
cols. For the purpose of determining the flow curve (and the yield stress σY ), just
the capacity to treat steady shear protocols γ̇ = const would anyway be sufficient.
A startup shear protocol with quasi-static strain would enable us to obtain the shear
modulus and the yield stress, and in principle it does not require to resort to dynamics,
as we are going to see.

3.2.3.1 MCT

We mentioned before the fact that a glass subject to shear can rejuvenate, which
means that its aging stops and ergodicity is restored [6]. Thanks to this fact, MCT
does a lot better in the context of driven dynamics than it does in aging situations,
and a lot of research efforts have been dedicated to the derivation of MCT-based
rheological equations. The first of such derivations, for the steady shear case, was
reported in [111], wherein a field-theoretic formalism was employed. A different
derivation [112] uses the projection operator formalism, although the physics is the
same in both cases. Above TMCT the viscosity is found to obey the scaling law

η(γ̇, T ) = η(T )[1 + γ̇/γ̇0]−ν (3.34)

with ν = 1, a shear thinning behavior. Below TMCT , a Bingham plastic-type [77]
behavior is predicted, with constant viscosity after the yielding point.

This approach can even be generalized to arbitrary shear protocols, as shown in
[113, 114]. Again, in the liquid phase a shear-thinning behavior is predicted, with a
flow curve more or less of the Herschel-Bulkley type [114]. If a step shear protocol
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is employed, γ̇(t) = γδ(t), one can again observe the usual stress overshoot, and
the yield stress and shear modulus can be computed. The shear modulus is found
to increase when temperature decreases, as reasonably expected. Oscillatory shear
protocols have also been studied within the MCT approach, see for example [115].

In summary, MCT provides a good qualitative description of flow in glass formers,
and is also remarkably flexible, allowing researchers to consider many different shear
histories. All of this despite being a first principle (for much time, the only first
principle) approach to glassy dynamics, which is always a very welcome feature.

However, one must not forget that MCT has an intrinsically MF nature, and
as a consequence of this it predicts a nonexisting glass transition (as discussed in
Sect. 2.1.2) which renders it unable of providing a good description of glass-formers
for temperatures much below TMCT . As a result of this, the rheological variants of
MCT do nor better nor worse than their equilibrium counterpart for temperatures
deep in the glass phase.

3.2.3.2 RFOT

Within RFOT every equilibrium glass is associated to a glassy metastable state. As
a result of this, properties relative to the state, before yielding occurs (first of all the
shear modulus), can be computed from first principles without resorting to dynamics,
see [116, 117], and [118] for a review. In [116], in particular, it is shown that the
arrest of the system within a metastable state is associated with the appearance of a
finite shear modulus that can be analytically computed from replica theory; to this
day, this is the only first-principle prediction of the manifestation of a finite shear
modulus (which we recall is the hallmark of solidity [79]) at the calorimetric glass
transition.

However, the description of flow after yielding still requires a dynamical approach,
which unsurprisingly relies again the analogy between MCT and PSM dynamics.

In [82] the dynamics of a PSM-like model is considered, which the addiction of
a driving force which mimes the shear driving. The Langevin equation for a single
spin is

σ̇i (t) = −μ(t)σi (t) − ∂H

∂σi
+ f drive

i (t) + ηi (t), (3.35)

with the driving force defined as

f drive
i (t) = ε(t)

∗∑
J̃ j1,..., jk−1
i σ j1(t) . . . σ jk−1 , (3.36)

http://dx.doi.org/10.1007/978-3-319-60423-7_2
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where ∗∑
≡

∑
i< j1< j2<... jk−1

+
∑

j1<i< j2<... jk−1

+ · · · +
∑

j1< j2<... jk−1<i

, (3.37)

and the couplings J̃ are quenched random variables symmetrical with respect to a
permutation of the j indices, but uncorrelated with respect of permutations of the
i index with any j index. As a result of this, this force cannot be written as the
derivative of a potential.

The role of the shear rate is played by ε(t) and a steady flow with ε = const is
considered in [82]. In the fluid phase above TMCT a shear thinning behavior much
like the one in Eq. (3.34) is found, although the exponent ν is now a function of the
temperature, with ν(TMCT ) = 2/3 and ν(T → 0) → 1. In the glass one has

η(γ̇, T ) � γ̇−ν(T ), (3.38)

so that the behavior is Herschel-Bulkley for all temperatures below TMCT .
It’s interesting to note that these results are different from the MCT ones, despite

the fact that the two approaches are supposed to have the same physical content. This
may be due to the chosen form of the driving force, that despite being reasonable is
still far away from being a description of a real, three dimensional flow. In any case,
this approach suffers from the same shortcomings of the MCT approach in terms of
MF-bound description.

Very little effort has been up to now dedicated to the description of flow beyond
mean-field [6], even at the level of the scaling description provided by the mosaic
(see [119] for a discussion and some first predictions). Anyway, this lack of focus
is shared also by other approaches such as Dynamical Facilitation and Frustration
Limited Domains [6].

3.2.3.3 Effective Models

The rheology of glassy materials beyond MF has been up to now studied mainly
through phenomenological models. The most popular of them is undoubtedly the
Soft Glassy Rheology (SGR) model [120, 121], which consists in an adaptation of
the trap models for aging originally proposed by Bouchaud [122, 123].

In this class of models the system is described as a single point that moves in
a complex PEL through activation, just like in Goldstein’s picture [124]. The PEL
itself is idealized as a host of traps with a certain depth, described by a distribution
ρ(E) of traps depths, which in turn induces through Arrhenius’ law a distribution
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ρ(T, τ ) of persistence times within the traps. The distribution of times is usually
chosen in such a way that its first moment diverges for low temperatures [6], so to
reproduce ergodicity breaking.

The SGR model implements strain as an effective lowering of the barriers between
traps [76]. We stress the fact that such a model has anyway a strong MF spirit, since
only the PEL is considered and every detail regarding actual real space structure is
neglected. However, the SGR model also allows activation, a trait which is not shared
by the MCT and RFOT approaches, allowing the study of the interplay between acti-
vation and driving. It is also remarkably flexible: arbitrary shear protocols can be
considered and the flow curve easily obtained: in particular, the model behaves as a
Herschel-Bulkley plastic below the ergodicity breaking (glass transition) tempera-
ture, while in the fluid phase the behavior goes from Newtonian to power-law as the
temperature is lowered [76].

Other phenomenological models have been defined over the years, mainly with
the description of the yielding transition in mind. As a result of this, they all use
STs as their building blocks, and mainly differ in how the interaction between STs is
modeled. Two classes of such models exist: in the first class, the interaction between
STs is modeled as thermal noise, in a MF kind of way [125, 126]. In the second class
[127, 128], STs are put on a lattice (in a spirit similar to cellular automatons [97])
and their interaction is usually mediated by an elastic propagator in the form

G(φ, r) � cos(4φ)

r
, (3.39)

which reproduces the quadrupolar structure shown in Fig. 3.10.
These models however have many shortcomings. The MF models, while exactly

solvable, all suffer from their neglect of real space structure, a choice which seems to
be very ill advised in the case of the yielding transition, whose phenomenology pos-
sesses a strong characterization in real space as we discussed in paragraph Sect. 3.2.2.
In addition to this, the modeling of interactions between STs as an effective ther-
mal bath (a trait also shared by the SGR model, in fact) requires the definition of
an associated “mechanical noise” effective temperature Teff , whose nature is all but
clear [74, 76, 82], and that of course suffers from all the shortcomings of effective
temperatures in general as discussed in paragraph Sect. 3.1.4.1. We refer to [95] for
a very critical point of view on the subject.

Elasto-plastic lattice models [127, 128], on the other hand, are more true-to-life
and do take real space structure into account, but they are anyway idealized [129]:
for example, they are limited to two dimensions, and usually do not take into account
the displacement of STZs as the material is deformed (see [75]); besides this, they
are not analytically solvable. As a result of these problems, usually they need some
tuning to satisfactorily reproduce flow curves [75].
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Chapter 4
The State Following Construction

In the preceding chapter we have detailed how glasses are endowed with well defined
and time-independent physical properties: they have a specific heat, a compressibility,
a Debye-Waller factor, a shear modulus, etc.: our aim is to compute analytically those
quantities from a first-principles theory. In this chapter we present some of the tools
that can be used to approach the problemwithin RFOT, all of which rely in someway
or another on the replica method originally developed in the context of spin glass
theory. In particular we present the State Following construction that this thesis is
based on, along with a possible generalization of it that could in principle allow to
model more complicated protocols than the ones considered in this work. The reader
should appreciate how all the computation schemes that we present in this chapter are
centered around the aim of treating metastability in a purely static fashion, without
having to solve the dynamics, in accordance with the RFOT picture of the glass
transition as a phenomenon with a static origin.

4.1 The Real Replica Method

We are interested in a metastable glass, be it obtained with a quenching [1] or an
annealing protocol [2]. We want to compute its physical properties as they would
manifest themselves in aDSCexperiment (Sect. 3.12) or in a quasi-static simple shear
experiment (Sect. 3.2.1). In both those cases, the perturbation (temperature change
or shear) is applied adiabatically to the material, which means that the system is in
restricted equilibrium inside a metastable state during the experiment. Within RFOT,
as we mentioned, states have a static origin: they are not just born from the plateau
regime in the dynamics, but they are minima of a suitable, static FEL. As a result
of this, and differently from what happens in other approaches to the glass problem,
they have a static free energy
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fα(T, γ) = − 1

Nβ
log

∫
X∈α

dX e−βVγ (X) = F({ρα(β, γ)},β) (4.1)

where X ≡ (x)Ni=1 is a generic configuration of the glass former, F is the free-energy
functional, ρα the amorphous profile that corresponds to the state, and γ a generic
perturbation that the glass is subjected to. This free energy rules the whole ther-
modynamics of the metastable state, and the physical observables of the system at
restricted equilibrium can be computed from it using standard equilibrium thermo-
dynamic relations, like Maxwell’s: within RFOT, to study a metastable glass, we
have to compute its free energy fα.

It is however obvious that computing the fα is not sufficient, because we also
need to know which state the system is in, i.e. we need to know α. However, as we
detailed in Sect. 2.1.4, this knowledge comes to us in the form of the complexity. If
the glass has been prepared through a quenching protocol, the state will be one of
the threshold states such that

fα = fth : max
f

�( f,β) = �( fth,β), (4.2)

while if the glass has been made with an annealing protocol down to a glass temper-
ature Tg , the state will be selected by the condition (2.25), that we recall here

fα = f ∗ : 1

Tg
= d�( f,β)

d f

∣∣∣∣
f = f ∗

, (4.3)

and the systemwill remain in this state during the quench down to the target tempera-
ture T . In both cases, knowledge of both the in-state free energy f and the complexity
� is required to study the thermodynamics of state α.

In principle, the computation of the free energy and complexity would require
starting from the free energy functional F : one has to compute the functional, then
find its stationary points as a function of T , and then count them to get the complexity;
quite a challenging program. This “hands-on” approach can nevertheless be imple-
mented in the case of the p-spin spherical model (PSM), wherein the free energy is
the TAP free energy [3] of all local magnetizations mi as we already discussed (we
refer again to [4] for further reading); but it is not viable in the case of real glass-
formers, also considering the fact that the free energy functional in real liquids is
usually a functional of the local density profile in the continuum [5] F[ρ(x)], unless
we limit ourselves to lattice gases.

The solution to this problem was proposed in [6] and goes under the name of real
replicamethod. The basic idea is to introducem replicas of the original system, with
the condition that they all live in the samemetastable state. This can be accomplished,
for example, by introducing a weak coupling ε between replicas [6]. The partition
function for the replicated system reads then

http://dx.doi.org/10.1007/978-3-319-60423-7_2
http://dx.doi.org/10.1007/978-3-319-60423-7_2


4.1 The Real Replica Method 87

Zm =
∑

α

e−βNm fα . (4.4)

now we can again introduce the complexity

1

N
log

[∑
α

δ( f − fα)

]
≡ �( f,β),

and again we get

Zm =
∫

d f e−βN [m f −T�( f,β)] = e−βN [m f ∗−T�( f ∗,β)] ≡ e−βN�(m,β), (4.5)

where we have defined the free energy of the replicated system �(m,β) and the
condition (2.25) on f ∗ has now been “upgraded” to

m

T
= d�( f,β)

d f

∣∣∣∣
f = f ∗

. (4.6)

Then one than easily prove that

f ∗(m,β) = ∂

∂m
[�(m,β)], (4.7)

�( f ∗(m,β),β) = m2 ∂

∂m
[m−1β�(m,β)]. (4.8)

So, once we are able to compute the free-energy � of the replicated system and
perform its analytic continuation to real values of m, the real replica method enables
us to compute the free energy f ∗(m,β) of the equilibrium states fixed by the (4.6)
and their complexity �( f ∗(m,β),β). The full complexity function can be then
computed by inverting the (4.6) to getm( f ∗,β) and plugging it into them-dependent
complexity, Eq. (4.8) to get �( f,β) [6–8].

Summarizing, the basic idea of the real replica method is to introduce a parameter
m conjugated to the in-state free energy f , allowing us to compute it just by taking
a derivative of the replicated free energy, in a standard thermodynamic fashion [6].
From the (4.6), we can see that choosing a different m selects a different group
of metastable states, which are different from the equilibrium states of the system
unlessm = 1: the presence of the parameter m allows us to choose f ∗ at our leisure,
and study different groups of states according to our needs: within this formalism,
choosing a dynamical protocol corresponds to choosing a function m(T ).

Indeed, observing more closely the (4.6) and comparing it with the (2.25), we are
immediately prompted to define an effective temperature in the following way

1

Teff
= m

T
= d�( f,β)

d f

∣∣∣∣
f = f ∗

, (4.9)

http://dx.doi.org/10.1007/978-3-319-60423-7_2
http://dx.doi.org/10.1007/978-3-319-60423-7_2
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which means that the states we select by choosingm at temperature T are effectively
those that would be equilibrated at T = Teff defined in the (4.9): we can appreciate
how the real replica method is nothing but a static (and more flexible) incarnation of
the effective temperature picture [9–11].

4.1.1 Quenching: The Threshold

In the case of a quenching protocol down to a target temperature T , the system will
remain stuck in the threshold states fixed by the (4.2), so the function m(T ) will
simply be m(T ) = mth(T ) such that

mth

T
= d�( f,β)

d f

∣∣∣∣
f = fth

, (4.10)

and unsurprisingly, one has

mth

T
= 1

Teff
(4.11)

where Teff corresponds [10] to the effective temperature computed from the dynam-
ical solution [12]. The real replica method allows one to compute all interesting
long-time observables relative to a generic quenching dynamics.

4.1.2 Annealing: Isocomplexity

In the case of an annealing dynamics, things are more complicated. We know that
the state of the system is selected at equilibrium through the (2.25), so we know that
m(Tg) = 1 and fα = f (1, Tg). However, we still need to determine the rest of the
functionm(T ) as the system is quenched below Tg and the original equilibrium state
is “followed” in temperature. Summarizing, we need a criterion to choose a function
m(T ) consistent with the requirement that the system remain in that same state as T
changes [13].

Following [14], one can assume that, as T is changes, states do not coalesce, or
merge, or cross. This means that the number (and thus the complexity) of states at
each free energy level f is a conserved quantity, and can be used as a label for the
states. This method is usually referred to as isocomplexity [13, 14]. The function
m(T ) will be then determined by the condition

�(1, Tg) = �(m(T ), T ), (4.12)

http://dx.doi.org/10.1007/978-3-319-60423-7_2
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where � is the m-dependent complexity computed in the (4.8). In Chap.7 we will
present some results on glassy state following obtained with the isocomplexity
assumption.

4.1.3 Summary

The real replica method provides us with a set of tools to treat metastability without
having to resort to the TAP approach. This method is thus well suited to the study
of a quenching dynamics like the one considered in [12]. It constitutes a computa-
tional tool conceived for the treatment of all systems with an RFOT transition (from
structural glasses, to spin glasses [15] and even optimization problems in computer
science [16]). Because of this, it has been for much time the standard method for the
treatment of structural glasses within RFOT, from the very first papers [17, 18] to
the more recent efforts of the series [19–22].

Nonetheless, as we detailed in the previous chapter, in recent years the experi-
mental and numerical focus has moved away from quenching protocols; and within
the real replica method, the only way to treat annealing protocols is the isocomplex-
ity assumption, which despite being reasonable fails in all models except the PSM:
the states do actually cross, merge and coalesce, so assuming that their number is
conserved is just plain wrong. The isocomplexity assumption is thus, at best, an
approximation of the real dynamics of the system, even at mean-field level.

This weakness should not come as a surprise considering how the real replica
method is basically a static recasting of the effective temperature concept, which
postulates that the typical configurations visited during a non-equilibrium, aging
dynamics are just the configurations the system would visit if it were equilibrated
at T = Teff . This is a very strong assumption that is false in most cases: the config-
urations visited by the system during aging may very well have nothing to do with
equilibrium ones, even at MF level, and as a result of this they may have a vanishing
weight in the equilibrium probability distribution, and be missed completely by the
real replica computation.

In summary, we need a more refined formalism to treat annealing dynamical
protocols like the ones considered in [23]. In the following section we introduce that
formalism, and we refer to [7, 8, 24] for further reading on the real replica method.

4.2 The Two-Replica Franz-Parisi Potential

Let us go back to the definition of the in-state free energy fα

fα(T, γ) = − 1

βN
log

∫
X∈α

dX e−βVγ (X). (4.13)

http://dx.doi.org/10.1007/978-3-319-60423-7_7
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Fig. 4.1 States as patches in
the space of configurations
of the glass-former

We have detailed in Sect. 2.1.4 how states are essentially “patches” in the configura-
tion space of the system (see Fig. 4.1), which in this case is the Nd-dimensional space
of vectors X . We have to somehow find a way to make sure that only configurations
belonging to state α are included in the partition function above, which means that
we have to define a Gibbs measure somehow constrained inside the state.

According to the amorphous solid picture Sect. 1.2.4, the configurations belonging
to state α will consist of the fixed amorphous configuration the particles vibrate
around, which is given by a set of positions R ≡ (r)Ni=1, and all configurations visited
during the vibration. We can thus hope to implement the constraint in state α by
accepting in the partition function only configurations which are not too far away
from R. We can thus write

f (T, γ; R) = − 1

βN
log

∫
dX e−βVγ (X)θ[�r − �(X, R)], (4.14)

where �(X, R) is the rescaled MSD between X and R

�(X, R) ≡ d

N

N∑
i=1

(xi − r i )2 (4.15)

and θ is the Heaviside theta function [25]. We have essentially chosen θ[�r −
�(X, R)] as the characteristic function of state α.

The f (T, γ; R) is the free energy of the glass selected by the amorphous config-
uration R. However, it is clear that such a thing cannot be computed: on technical
level, the presence of the constraint breaks translational invariance and prevents us
from using standard statistical-mechanical methods; on a conceptual level, we do
not know R.

http://dx.doi.org/10.1007/978-3-319-60423-7_2
http://dx.doi.org/10.1007/978-3-319-60423-7_1
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To circumvent this difficulty we can assume that the properties of the glass do not
depend much on the actual realization of the amorphous configuration R, i.e., that
the observables of the glass possess a self-averaging [4] property. As a rule of thumb,
this is usually true for extensive observables like the free energy. Thuswe can average
the f over all possible amorphous configurations R, which will be distributed with
a certain probability distribution P(R).

We then have to find out which is P(R), but this is simple: the configuration
R is by definition the last configuration visited by the system before falling out of
equilibrium, so it will be distributed with the usual canonical distribution at T = Tg ,

P(R) = e−βgV (R)

Z(Tg)
. (4.16)

So in the end we can define the free energy of the glass

fg(T, γ; Tg) = f (T, γ; R) =
∫

dR
e−βgV (R)

Z(Tg)
f (T, γ; R), (4.17)

which is the free-energy of a glass at temperature T , subjected to a generic perturba-
tion γ, and prepared through an annealing protocol such that the system falls out of
equilibrium at Tg

1: it allows us to follow a state in temperature fromwhen it is selected
by the (2.25) at Tg to a temperature T whereupon a measurement is performed. This
free energy, dubbed the Franz-Parisi potential (FP), has been formalized in [27] in
the context of spin glass models, with the express purpose of studying the long time
limit of annealing protocols like the ones considered in [23], and is the centerpiece of
State Following (SF) formalism. Up to now it has been only employed in the context
of schematic spin glass models [28–31]; in this thesis we apply it, for the first time,
to a realistic model of glass former.

This is exactly what we need, but there is clearly a missing ingredient: which is
the value of�r?We have to somehow fix its value in such a way that the whole glass
state, and nothing more than that, is sampled.

To understand how to choose �r , let us rewrite the (4.14) in the following way:

1

Z

∫
dX e−βVγ (X)δ[�r − �(X, R)] = 〈δ[�r − �(X, R)]〉 ≡ e−βN (V (�r )−V (∞)), (4.18)

wherein we have replaced the Heaviside theta with a Dirac delta2 and used the fact
that choosing�r = ∞means considering the whole configuration space. The (4.18)

1We stress again that the self-averaging property is not true for all observables. In particular, it is
not true for observables strongly related to the structure R of the glass, such as the refractive index:
the structure R is sampled from the distribution P(R), so it not uniquely determined by Tg , and
as a result of this glasses with the same fictive temperature can have different refractive indexes as
discovered in [26].
2In the thermodynamic limit, the two choices are completely equivalent: if the theta is the charac-
teristic function of the state, then the delta is the characteristic function of its boundary. But in the
thermodynamic limit the dimensionality of the configuration space goes to infinity, and the volume
of any compact set inside it concentrates on its own boundary [32]. It is a purely geometrical fact.

http://dx.doi.org/10.1007/978-3-319-60423-7_2
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is nothing but the probability3 that, if we throw a random configuration X with the
canonical distribution, we find it to be at a distance �r from the configuration R,
written in a large deviation form through the function V (�r ) ≡ f (T, γ; R).

How does V (�r ) behave? The probability to find the configuration X just on
top of configuration R is obviously zero, so one must have V (�r = 0) = ∞. Con-
versely, when�r = ∞, we are accepting all configurations, so the probability is one.
Between these two values, we expect that at high temperature the probability will just
monotonically increase (and V (�r ) decrease), since we are considering a larger and
larger region of the space of configurations and the Boltzmann-Gibbs distribution is
effectively a uniform distribution at high T .

However, this will not be true below TMCT , whereupon glassy states appear (see
Fig. 4.1). The configuration R will belong to one of the states and the probability
will go up monotonically only as long as we consider through �r a region contained
within the state: when the region becomes bigger, one starts to sample configurations
on the boundary, which are unlikely configurations that the system only visits when
barrier crossings take place: the probability will start to go down and V (�r ) to
increase. When �r is increased further, other states are taken into consideration and
P(�r ) will increase anew.

Summarizing, below TMCT , the function V (�r )will have aminimum for�∗
r �= 0,

and that value of�r will correspond to the optimal sampling of configurations inside
the state. This picture is not changed by the introduction of the average over R (4.17):
the fg(T, γ; Tg) must be minimized over �r to obtain the free energy of the glass.

If one chooses T = Tg, then the FP potential corresponds to the free energy of an
equilibrium state at Tg, the same one can compute from the real replica method. In
that case, since V (�r = ∞) = Fliq , one has by definition

V (�∗
r ) − V (∞) = T�(T ) (4.19)

as sketched in Fig. 4.2. From the Fig. 4.2 the reader can appreciate the first order
character of the glass transition according toRFOT: TMCT corresponds to the spinodal
point whereupon metastable states lose stability; below TMCT , a glassy minimum is
presentwith�r = �∗

r �= 0, but alwaysmetastablewith respect to the liquidminimum
with �r = ∞, with a free energy gap between the two equal to T�(T ); at T = TK ,
the glassy minimum becomes stable with respect to the liquid one and the ideal glass
transition takes place.

In Chaps. 5 and 6 we present the results obtained applying the SF construction to
hard spheres in the MF limit. We refer to [31] for a comparison of the isocomplexity
and SF approaches in the context of p-spin glasses.

3We recall that the prescription to compute the probability distribution of a generic observableO(C)

is P(O) = 〈δ(O − O(C))〉.

http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_6
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Fig. 4.2 The FP potential as a function of �r for T = Tg , as the temperature is lowered as detailed
in Sect. 2.1.4

4.3 Beyond Two Replicas: The Replica Chain
and Pseudodynamics

The FP construction can be generalized to larger numbers of replicas. Its gener-
alization to three replicas was for example used in [33] to study barriers between
metastable states, and its generalization to an arbitrary number of replicas was first
sketched in [34].

Let us suppose that we have a generic system with configurations C, C ′ . . . , a
Hamiltonian H(C) and a notion of “similarity” between configurations q(C, C ′),
which has to be conveniently chosen depending on the system. Above, we have used
the MSD between configurations, but if one starts from a density-functional theory
of a liquid, the choice could be [35]

q(C, C ′) =
∫

dxd y w(x − y)ρC(x)ρC′( y), (4.20)

where ρC(x) is the density profile relative to the configuration C [5] and w a coarse-
graining function whose details have no relevance. For spin models one usually uses
[36]

qCC′ = 1

N

N∑
i=1

σC
i σC′

i . (4.21)

One starts from replica 1, which is chosen to be equilibrated at a temperature T1

http://dx.doi.org/10.1007/978-3-319-60423-7_2
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P(C1) = 1

Z
e−β1H(C1). (4.22)

Replica 2 is chosen to be equilibrated at a temperature T2, and constrained to be near
to replica 1 by using the q(C1, C2)

P(C1, C2) = 1

Z(C1)e
−β2H(C2)δ(q(C1, C2) − C(1, 2))

1

Z
e−β1H(C1), (4.23)

where

Z(C1) ≡
∫

dC2e−β2H(C2)δ(q(C1, C2) − C(1, 2)). (4.24)

This corresponds to the two-replica case; in general, one can define a transition
probability

M(Cs+1|Cs) ≡ 1

Z(Cs)e
βs+1H(Cs+1)δ(q(Cs, Cs+1) − C(s, s + 1)), (4.25)

in such a way that the probability of a “trajectory” can be written as

P(CL , CL−1, . . . , C1) =
L−1∏
i=1

M(Cs+1|Cs)P(C1). (4.26)

for a chain of length L . The transition rate defined in the (4.25) defines a Markov
stochastic process, andwith it, a dynamics.Within this dynamics, the system samples
the phase space with an equilibrium Boltzmann-Gibbs distribution at each step, so it
is allowed to equilibrate, but not too far away from the configuration at the preceding
step, because of the δ constraints: the replica chain defined above implements for-
mally the RFOT idea of the dynamics of glass formers as a process made of activated
jumps between states. Because the system equilibrates at each step, the dynamics
defined in (4.25) is fittingly referred to as a Boltzmann pseudodynamics [36].

The replica chain can be interesting to study for a finite number L of bonds (for
example, in [29, 37] it was argued that the two-replica potential may be not sufficient
for following states adiabatically in the whole range of temperatures), but its most
interesting application is in the limit L → ∞ of infinite bonds and constant chain
length. In that case, the values of the index i are promoted to continuous variables
and the parameters C(s, s + 1) to functions C(t, t ′). It can then be shown [36] that
in this limit, and with βs = const = β one gets back, for the PSM, the slow part of
the dynamical equations (3.5), (3.6) and (3.7) for a quenching dynamics. This is no
surprise: in the pseudodynamics defined above, the system equilibrates within a state
at each step, and as a result of this only the details of the slow part of relaxation are
reproduced, while the fast part is neglected by construction. An annealing dynamics
[23] can be modeled by choosing β1 = βg and βs = β ∀s �= 1.

http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_3
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The main advantage of the pseudodynamics approach is the usual advantage of
RFOT tools in general (real replica method, FP potential, etc.): since the system is
equilibrated at each step, the actual computation of the properties of the chain is
completely static in nature, and corresponds, roughly, to the problem of computing
the static properties of a replicated system, where each replica corresponds to a node
in the chain. Again, details of the long-time dynamical properties of the system can
be computed without ever touching the dynamics itself.

In [35] the replica chain is applied to a generic model of glass former in a liquid
theory setting.Within liquid theory, the computation of the statics of a liquid typically
reduces to the computation of its pair distribution function g(r) [5]. To implement
the chain formalism, one must consider a mixture of different particle species, each
of them corresponding to one replica in the chain, with the pair distribution function
generalized to gab(r)where a and b are species-labeling indexes.Within liquid theory
for particle mixtures, the gab(r) is related to the direct correlation function cab(r) by
the Ornstein-Zernike relation [5]

cab(x, y) = hab(x, y) − ρ
∑
c

∫
d z hac(x, z)ccb(z, y), (4.27)

where hab(x) ≡ gab(x) − 1. To solve the statics of the mixture, one has to find
another relation to link the cab(x) with the gab(x), so to get a closed system of
integral equations, as per usual practice in liquid theory [5]. In [35], two closure
schemes are studied: the first is the well known Hypernetted Chain (HNC) closure
[5]:

log[hab(x) + 1] + βvab(x) = hab(x) − cab(x), (4.28)

where vab(x) is the interaction potential between species a and b; the other is a
closure scheme proposed by Szamel in [38]:

cab(k) =
∫

dq V (k, q)hab(q)hab(k − q), (4.29)

where V (k, q) is the MCT vertex defined in the (2.11). Very interestingly, once one
imposes TTI and FDT, in both cases the slow part of the MCT equation is recovered
[35]. This result bolsters the RFOT picture of dynamics as a hopping process between
states.

The replica chain is not the main focus of this thesis so our treatment of it stops
here. Up to now, it has only been used in the case βs = const which reproduces a
quenching dynamics, but its potential goes far beyond that. On one hand, it could be
interesting to consider general protocols wherein β(t) is a full function of the time,
but the most interesting application could come from its generalization to a shear
strain situation, instead of simple aging. For example, it could be in principle used
to get a complete RFOT-born rheological theory of glass formers for a generic shear
protocol γ̇(t).

http://dx.doi.org/10.1007/978-3-319-60423-7_2
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Chapter 5
The Replica Symmetric Ansatz

In this chapter we perform the computation of the Franz-Parisi potential for the
hard sphere (HS) model in the MF limit. As we anticipated, the perturbations we
focus on will be adiabatic compression/decompression and quasi-static shear strain,
and we compute the response of glassy states to these perturbations. As we detail
in the following, the computation requires the formulation of an Ansatz about the
structure of the metastable state the system is trapped in. In this chapter we focus
on the so-called Replica Symmetric (RS) ansatz, which means that we assume the
state to be a simple minimum of the FEL without any further internal structure.
Since all calculations are performed with the saddle-point method [1], the results
obtained from this ansatz and its relative saddle point must be checked for stability,
i.e. the Gaussian fluctuations around the saddle point value of the integral must be
negative.We verify that beyond a certain value of both the compression and the strain
parameter, it is not so: the RS Ansatz is unstable and a more complicated structure
manifests inside the glassy minimum in study, requiring a more complicated Ansatz.

5.1 Computation of the FP Potential

We want to compute:

Fg(T, γ; Tg,�r ) = 1

Zm

∫
dR1 · · · dRm e−βg

∑m
a=1 V (Ra)F(T, γ; R1,�r ), (5.1)

with

F(T, γ; R,�r ) ≡ −T log
∫

dXe−βVγ (X)δ(�r − �(X, R)), (5.2)
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where to be general we average the F over m replicas instead of just one. This
way, one can in principle take and follow a state outside of the equilibrium line
by choosing m appropriately as explained in Sect. 4.1, a protocol which could for
example correspond to a quench followed by an adiabatic perturbation. However,
in this thesis we only focus on the equilibrium, m = 1 case, corresponding to an
annealing protocol as previously discussed.

The average above defined can be computed using the replica trick [2, 3]. If one
defines

Zg ≡
∫

dXe−βVγ (X)δ(�r − �(X, R)), (5.3)

and

−βNFFP = log
∫

dR1 · · · dRmdX1 · · · dXse−βg
∑m

a=1 V (Ra)−β
∑s

b=1 Vγ(Xb)

= log
∫

dX1 · · · dXme−βg
∑m

a=1 V (Xa)(Zg)
s = log[Zm(Zg)s] , (5.4)

then we have, at leading order for small s

−βNFFP = log
[
Zm(Zg)s

]
∼ log

[
Zm(1 + slog(Zg) + O(s2))

]

= log Zm + s log Zg + O(s2)

= −βFm − sβFg(T, γ; Tg) + O(s2) . (5.5)

Therefore we have to compute the free energy ofm + s replicas;m “reference” ones
and s “constrained” ones, that are at different temperature or density, and then we
have to expand it around s = 0; the leading order gives the replicated free energy Fm
[4], while the linear order in s will yield the FP free energy Fg(T, γ; Tg) we want to
compute.

5.1.1 Perturbations

The construction above can be in principle performed for any model V (X) of glass
former. In the following, we focus only on the hard sphere (HS) [5] interaction
potential, whose definition we recall here

vHS(x) ≡
{
0 |x| > D

∞ |x| ≤ D
(5.6)

hence temperature plays no role and the packing fraction is the only relevant
control parameter [5]. Furthermore, the energy is zero, therefore the free energy
contains only the entropic term and −βF = S.

http://dx.doi.org/10.1007/978-3-319-60423-7_4
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For technical reasons, it is convenient to fix the packing fraction through the sphere
diameters, while assuming that the number density ρ be constant, as in the LS algo-
rithm [6]. We consider the m reference replicas to have diameter Dg and pack-
ing fraction ϕg , while the s constrained replicas have the same number density
but D = Dg(1 + η/d). Following [7, 8] we also define a rescaled packing fraction
ϕ̂ = 2dϕ/d that has a finite limit when d → ∞. Note that the packing fraction of the
constrained replicas is therefore ϕ = ϕg(D/Dg)

d ∼ ϕgeη and similarly ϕ̂ = ϕ̂geη.
Following [9–11], we also apply a shear strain γ to the constrained replicas,

which is obtained by deforming linearly the volume wherein the system is contained.
Following the discussion in Sect. 3.2, we call x ′

μ, with μ = 1, · · · , d, the coordinates
in the original reference frame, in which the shear strain is applied. In this frame,
the cubic volume is deformed because of shear strain. To remove this undesirable
feature, we introduce new coordinates xμ of a “strained” frame wherein the volume
is brought back to a cubic shape. If the strain is applied along direction μ = 2, then
all the coordinates are unchanged, xμ = x ′

μ, except the first one which is changed
according to

x ′
1 = x1 + γx2 , x1 = x ′

1 − γx ′
2 . (5.7)

Let us call S(γ) the matrix such that x′ = S(γ)x. In the original frame (where the
volume is deformed by strain), two particles of the slave replica interact with the
potential v(|x′ − y′|). If we change variable to the strained frame (where the volume
is not deformed), the interaction is

vγ(x − y) = v(|S(γ)(x − y)|) . (5.8)

An important remark is that det S(γ) = 1 meaning that the simple strain defined
above does not change the volume and thus the number density ρ = N/V of the
system.

In summary, to follow a glass state under a compression and a strain, we have
to compute the Franz-Parisi potential where the constrained replicas have a diame-
ter D = Dg(1 + η/d) and interact with a potential Vγ(X) = ∑

i< j vγ(xi − x j ). The
control parameter of the reference replica is their density ϕg , while the control para-
meters of the constrained replicas are the compression parameter η = log(ϕ/ϕg)

and shear strain γ. The replicated entropy of this system can be computed through a
generalization of the methods of Refs. [8, 12], which we sketch below.

5.1.2 The Replicated Entropy and the RS Ansatz

The exact expression of the replicated entropy of HS in the MF limit, and for a
completely generic replica structure has been derived in [12]:

http://dx.doi.org/10.1007/978-3-319-60423-7_3
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s[α̂] =1 − log ρ + d log(m + s) + (m + s − 1)d

2
log(2πeD2

g/d
2)

+ d

2
log det(α̂m+s,m+s) − d

2
ϕ̂g F

(
2α̂
)

, (5.9)

where α̂ is a (m + s) × (m + s) symmetric matrix defined in Appendix A and α̂a,a

is the matrix obtained from α̂ by deleting the a-th row and column. We refer to
Appendix A for a sketch of the derivation of the ∞-dimensional solution.

As explained in Appendix A, the matrix α̂ encodes the fluctuations of the replica
displacements ua ≡ xa − X around the center of mass of all replicas. Because∑

a ua = 0, the sum of each row and column of α̂ is equal to zero, i.e. α̂ is a Lapla-
cian matrix. Here we used Dg as the unit of length, and for this reason Dg and ϕ̂g

appear in Eq. (5.9). We call the last term in Eq. (5.9) the “interaction term”, while
the one containing the determinant of αm,m will be called the “entropic term”.
It is usually more convenient to use a different matrix, denoted as �̂

�ab ≡ d

D2
g

〈(ua − ub)
2〉 = αaa + αbb − 2αab, (5.10)

which encodes the MSDs between replicas; the matrix �̂ has a more straightforward
physical interpretation and is more suited to the definition of the parameter �r in
Sect. 4.2, but it is completely equivalent to the α̂.

Following [12], the (5.9), once optimized over α̂ (or equivalently �̂), yields the
entropy of the replicated system of hard spheres. We must then perform its analytic
continuation to real s and then take the linear order in s to get the FP potential. In order
to perform this computation, we must make a choice, an ansatz, for the matrix �̂,
which encodes the replica structure of the problem, and therefore its physical content
in terms of structure of the FEL. The simplest choice is the replica symmetric (RS)
ansatz, which reads

(5.11)

where �g is internal to the block of m replicas, � to the s replicas, and �r is the
relative displacement between the m-type and s-type replicas. We also define the
parameter

� f ≡ 2�r − �g − �. (5.12)

http://dx.doi.org/10.1007/978-3-319-60423-7_4
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Let us examine the (5.11). The m-block encodes the MSDs between the master
replicas, the s−block of the slave replicas, and the off-diagonal blocks the MSDs
between the master and slave replicas: the MSDs in the off-diagonal blocks are all
equal to �r as prescribed by the δ-constraint in the (5.2); as discussed before, we
assume the replicas in the m-block to be at equilibrium in the liquid phase, so there
is no reason for the MSDs between them to have any special structure.

The physical content of the RS ansatz is contained in the s–block. Suppose that we
have a glassy minimum in the FEL, and we throw s replicas inside it at random using
the Boltzmann-Gibbs distribution; those replicas probe the structure of the bottom
of the glassy minimum as we follow it under compression or shear. If the minimum
is just a plain paraboloid, there is no reason for the MSDs between any couple of the
slave replicas to depend on the actual couple we choose: once they equilibrate inside
the state, all replicas are equivalent and we can permutate them as we please without
changing the physics of the problem: we are indeed in a replica symmetric scenario.

Let us now assume that bottom of the state actually contains three different sub-
minima: the situation changes completely. For simplicity let us assume that s = 9,
and replicas 1–3, 3–6 and 6–9 end up in minimum 1, 2 and 3 respectively: it is clear
that the permutation symmetry between replicas has been broken; replicas inside the
same sub-minimum (like replicas 1 and 3) will be close together and will have a low
mutual MSD �13, but replicas in two different sub-minima (for example replicas 3
and 5) will be farther apart andwill have aMSD�35 higher than�13: we are in a one-
step replica symmetry broken (1RSB) scenario [3], and the s–block of matrix α̂ will
have to contain two MSD parameters, �2 for replicas inside the same sub-minimum
and �1 for replicas in different ones [13]. In Fig. 5.1 we represent pictorially the
difference between the RS and 1RSB scenarios.

The breaking of replica symmetry described above can be iterated: the sub-minima
could contain sub-sub minima (2RSB) and so on. The process can in principle go
on indefinitely, and we will see that in fact it does. However, in this chapter we limit
ourselves to the simplest RS structure, encoded by matrix (5.11).

Fig. 5.1 RS and RSB structures for the glassy state. Grey blobs are sub-states and black dots are
replicas
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The entropy (5.9) must now be computed for the choice (5.11) of the matrix α̂
and then optimized with respect to �g, �, and �r . The computation in quite long
and not particularly instructive, so we give the details in Appendix B, and we skip
directly to the final result. The entropic term is

sentr = log det αm,m = (1 − m − s) log 2 − 2 log(m + s) + (m − 1) log�g

+ (s − 1) log� + log[ms� f + s�g + m�], (5.13)

and for the interaction term one has

F(�g,�,� f ) =
∫

dζ√
2π

e− ζ2

2 F0
(
�g,�,� f + ζ2γ2

)
. (5.14)

with F0 equal to

F0(�
g,�,� f ) =

∫
dy ey

{
1 − �

(
y + �g/2√

2�g

)m

×
∫

dx �

(
x + y − η + �/2√

2�

)s e− 1
2� f (x−� f /2)

2

√
2π� f

}
, (5.15)

where we have defined

�(x) ≡ 1

2
(1 + erf(x)), (5.16)

and erf(x) is the error function [14]. We notice that the compression parameter η and
the shear γ both enter only in the interaction term. This completes the computation
of the entropy of the m + s replicas.

5.1.3 Final Result for the Entropy of the Glassy State

Now that we have obtained the replicated entropy, we have to expand it for small s
and take the leading order in s, in order to get the Franz-Parisi entropy of the glassy
state.

For s → 0 we obtain, as anticipated, the real replica entropy form replicas [7, 8]:

lim
s→0

s[α̂] = sm(�g) =1 − log ρ + d

2
(m − 1) + d

2
logm + d

2
(m − 1) log(π�g/d2)

− d

2
ϕ̂g

∫
dy ey

[
1 − �

(
y + �g/2√

2�g

)m]
. (5.17)
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The linear order in s gives, finally, the in-state entropy of the glassy state (Franz-
Parisi entropy):

lim
s→0

∂s{s[α̂]} = sg =d

2
+ d

2

�g + m� f

m�
+ d

2
log(π�/d2)

+ dϕ̂g

2

∫
Dζ

∫
dy ey �

(
y + �g/2√

2�g

)m

×
∫

dx log

[
�

(
x + y − η + �/2√

2�

)]
e− 1

2�γ (ζ) (x−�γ (ζ)/2)
2

√
2π�γ(ζ)

,

(5.18)

where �γ(ζ) = � f + ζ2γ2 and we recall that Dζ = dζ√
2π
e− ζ2

2 . It will be often con-

venient to make a change of variable x ′ = (x − �γ(ζ)/2)/
√

�γ(ζ) in the integral,
which leads to (dropping the prime for convenience):

sg =d

2
+ d

2

�g + m� f

m�
+ d

2
log(π�/d2) + dϕ̂g

2

∫
dy ey �

(
y + �g/2√

2�g

)m

∫
Dζ Dx log

[
�

(√
�γ(ζ)x + �γ(ζ)/2 + y − η + �/2√

2�

)]
. (5.19)

From this expression of the internal entropy, we can obtain the saddle point equations
for � and � f and study the behavior of glassy states. We notice that the parameter
�g is contained only in the (5.17), so its saddle point equation is independent of both
η and γ and only depends on the glass transition density ϕ̂g .

5.1.4 Saddle Point Equations

As already detailed, the FP entropy (5.19) must be optimized over �, � f and �g

in order to get the entropy of the metastable glassy state. The equation for �g is
obtained by maximizing Eq. (5.17). We have

0 = m − 1

m�g
+ ϕ̂g

2

∫
dy ey�

(
y + �g/2√

2�g

)m−1 e− (y+�g/2)2

2�g

√
2π�g

(
1

2
− y

�g

)
. (5.20)

For a fixed reference density ϕ̂g (and fixed m, here we are mostly interested in
m → 1), one can solve this equation to obtain �g . Then, the entropy in Eq. (5.19)
must be maximized with respect to � and � f to give the internal entropy of a glass
state prepared at ϕ̂g (the value of �g is the equilibrium one corresponding to ϕ̂g)
and followed at a different state point parametrized by η and γ. As usual in replica
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computations [15], the analytical continuation to s → 0 induces a change in the
properties of the entropy, and as a consequence the solution of the equations for �

and� f is not amaximum, but rather a saddle-point.However, the correct prescription
is not to look at the concavity of the entropy, but to check that all the eigenvectors
of the Hessian matrix of the s[α̂] remain negative, as we discuss in the next section.

The equations for � and � f are obtained from the conditions ∂sg
∂�

= 0 and ∂sg
∂� f =

0. Starting from Eq. (5.19) and taking the derivatives, we get

0 = m� − �g − m� f

m�2
(5.21)

+ ϕ̂g

2

∫
dyDxDζ ey

�
(

y+�g/2√
2�g

)m

�
(

ξ√
2�

) e− ξ2

2�√
2π�

(
1 − ξ

�

)
,

0 = 1

�
+ ϕ̂g

2

∫
dyDxDζ ey

�
(

y+�g/2√
2�g

)m

�
(

ξ√
2�

) e− ξ2

2�√
2π�

(
1 + x√

�γ(ζ)

)
, (5.22)

with

ξ = √
�γ(ζ)x + �γ(ζ)/2 + y − η + �/2 , (5.23)

wherein again �γ(ζ) = � f + γ2ζ2. In some cases, it might be useful to perform
an additional change of variables from y to ξ. Those saddle point equations must
be solved for varying η and γ, and the entropy (5.18) must be computed along the
solution in order to get the physical observables of the glass that we compute in the
next paragraph.

5.1.5 Physical Observables

We now compute the pressure and the shear stress, that are the responses of the
glassy state to compression and shear-strain, respectively. We recall that � and � f

are obtained by setting the derivatives of sg with respect to them equal to zero, which
means that when we take for example the derivative of sg with respect to γ, it is
enough to take the partial derivative instead of the total one.

For a system of hard spheres, the reduced pressure p = βP/ρ is the response of
the system to compression and is given by [5, 7]

pg = −ϕ̂
∂sg
∂ϕ̂

= −∂sg
∂η

, (5.24)
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and we get from Eq. (5.19):

pg
d

= ϕ̂g

2

∫
dyDxDζ ey

�
(

y+�g/2√
2�g

)m

�
(

ξ√
2�

) e− ξ2

2�√
2π�

(5.25)

recalling Eq. (5.23). The pg/d vs. ϕ̂ (or η = log(ϕ̂/ϕ̂g)) curve is the equation of state
of the corresponding metastable glass.

The response to a shear strain is given by the shear stress, which is defined as [11]

βσ = −∂sg
∂γ

, (5.26)

and we get from Eq. (5.19):

βσ

d
= −γ

ϕ̂g

2

∫
dyDxDζ ey

�
(

y+�g/2√
2�g

)m

�
(

ξ√
2�

) e− ξ2

2�√
2π�

(
1 + x√

�γ(ζ)

)
ζ2 . (5.27)

5.1.5.1 Shear Modulus and Dilatancy

It is interesting to consider as a particular case the response of the glass to an
infinitesimal strain, γ → 0. In that case, we have that both �γ(ζ) → � f and
ξ → √

� f x + � f /2 + y − η + �/2 become independent of ζ. We have thus

βμ

d
= lim

γ→0

βσ

dγ
= − ϕ̂g

2

∫
dyDx ey

�
(
y+�g/2√

2�g

)m

�
(

ξ√
2�

) e− ξ2

2�√
2π�

(
1 + x√

� f

)∫
Dζ ζ2 = 1

�
,

(5.28)
where the last equality is obtained by noticing that

∫ Dζ ζ2 = 1 and using Eq. (5.22)
in the limit γ → 0, where again the integral over ζ disappears because ξ and �γ

become independent of ζ. In this way we see that σ/γ → μ, where μ is the shear
modulus of the glass and it is inversely proportional to the cage radius. This provides
an alternative derivation of the results of [9, 11].

From Eq. (5.28) we deduce that for small γ the physical entropy is

sg(η, γ) = sg(η, γ = 0) − d

2
γ2 1

�(η, γ = 0)
+ · · · , (5.29)
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where �(η, γ) is the solution of Eqs. (5.21) and (5.22). Therefore we have

pg(η, γ) = − dsg(η, γ)

dη
= pg(η, γ = 0) + d

2
γ2 d

dη

1

�(η, γ = 0)
+ · · ·

= pg(η, γ = 0) + γ2(βR(η)/ρ) + · · · , (5.30)

from which we deduce the expression of the dilatancy R as

βR(η)

ρ
= d

2

d

dη

1

�(η, γ = 0)
. (5.31)

5.2 Stability of the RS Ansatz

In the preceding section we have detailed the computation of the replicated entropy
and theFPpotential, employing the simplest possibleRS ansatz. The computation has
been made with the saddle point, or steepest descent method [1], wherein an integral
in the form

∫
dx eN f (x) is approximated as eN f (x∗), with x∗ a point of maximum of

the f (x). It can be shown that the error committed with this approximation vanishes

in the limit N → 0 as long as the point x∗ is a maximum, i.e. if d2 f
dx2

∣∣∣
x=x∗

< 0.

We stress the fact that this is not only a mathematical problem, but also a physical
one: in statistical mechanics, the function f (x) is usually the Gibbs free energy as
a function of the order parameter, like the Gibbs free energy f (m) of the Curie-
Weiss model as discussed in Sect. 2.1.1, and its stationary points x∗ correspond to
the possible phases the system can be found in. If the second derivative of the f (x)
becomes zero, this means that a phase transition is taking place: the stable phase
(or equivalently, the saddle point) the system is in becomes critical (flat), an infinite
susceptibility manifests, and below the transition the stable saddle point shifts to
a different value x∗, while the stationary point that was stable above the transition
(m∗ = 0 in the case of the Curie-Weissmodel) becomes unstable, as shown in Fig. 2.1
for the ferromagnetic transition.

In the case of the replicated entropy, we have a much more complicated “Gibbs
free energy” s[α̂] and “order parameter” α̂, but the spirit is exactly the same: checking
the concavity of the replicated entropy s[α̂] is one and the same with studying the
behavior of the glassy state in terms of in-state phase transitions wherein the glassy
minimum would “split” in sub-minima as in Fig. 2.1. In summary, we have to check
that the saddle point given by Eqs. (5.20), (5.21) and (5.22) is a maximum of the
replicated entropy.

It is however clear that the question requires some caution. First of all, we have
restricted ourselves to a fixed form of the matrix α̂, i.e. the RS one. As a result of
this, checking the concavity of the replicated entropy with respect to �g , � and � f

would only tell us if there is an instability within the RS ansatz, but would miss
instabilities towards saddle points with more RSBs, which as we discussed before

http://dx.doi.org/10.1007/978-3-319-60423-7_2
http://dx.doi.org/10.1007/978-3-319-60423-7_2
http://dx.doi.org/10.1007/978-3-319-60423-7_2
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is the interesting case corresponding to a phase transition inside the minimum. As a
result of this, the general Hessian matrix of the s[α̂],

Ma<b;c<d ≡ 2

d

δ2s[α̂]
δαa<bδαc<d

(5.32)

must be calculated, and only then we can compute it on the RS solution at the saddle
point.

Another issue is the fact that the s[α̂] is also a function of the parameter s, which
we send to zero in the end to compute the FP potential. So we are considering the
Hessian of a function of a matrix which has one block of size s × s with s going
to zero, a clearly pathological situation. To illustrate the problems that one could
have, a pedagogical example [15] is a s × s matrix with zeros on the diagonal and
an off-diagonal parameter q

Q =
⎛
⎝0 q q
q 0 q
q q 0

⎞
⎠ s = 3 (5.33)

And a function s[Q] defined as

s[Q] ≡ −Tr(Q2) = −s(s − 1)q2. (5.34)

As long as s ≥ 1, it is clear that q = 0 is a maximum of s. But if we send s → 0,
it evidently becomes a minimum: changing the value of s can change the nature of
stationary points of the s[α̂], as we precedingly discussed. As a result of this, the
usual prescription in replica theory is that the Hessian (5.32) must be computed for
general s, and then one must verify that the analytic continuation of its eigenvalues
for s → 0 be negative, in order to check stability [15, 16].

5.2.1 The Unstable Mode

Now that we have settled these questions we can proceed with the calculation of the
Hessian (5.32). If we observe it closely, we see that we are checking the fluctuations
of the s[α̂] with respect to all the elements in the α̂ matrix, i.e. we are considering
fluctuations in all the blocks. But already from an intuitive point of view, it is clear
that only fluctuations in the sector of slave replicas should matter: the s replicas are
the ones that probe the bottom of the glass state as we follow it, while them ones only
select the state and remain at equilibrium in the liquid phase. Only the s replicas are
able to detect a transition within the state like the one shown in Fig. 2.1 (this intuitive
argument is made more formal in Appendix C).

http://dx.doi.org/10.1007/978-3-319-60423-7_2
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This means that we can focus just on the “reduced Hessian”

Ms
a≤b;c≤d ≡ 2

d

δ2s[α̂]
δαa<bδαc<d

, a, b, c, d ∈ [m + 1,m + s]. (5.35)

and compute it on the RS solution. This reduced Hessian enjoys the same exact
replica permutation symmetries of the Hessians typically considered within the real
replica method [12, 17–19], wherein the matrix α̂ is just an RS matrix without any
block structure. In particular, one can show that because of replica symmetry, the
Hessian Ms , when computed on the RS solution, must necessarily have the general
form

Ms
a<b;c<d = M1

(
δacδbd + δadδbc

2

)
+ M2

(
δac + δad + δbc + δbd

4

)
+ M3,

(5.36)
so it effectively depends only on three parameters M1, M2 and M3. As shown in [17,
18], this operator has only three independent eigenvalues,

λR = M1 (5.37)

λL = M1 + (s − 1)(M2 + sM3) (5.38)

λA = M1 + s − 2

2
M2 (5.39)

called the replicon, longitudinal and anomalous modes, respectively. Each of these
modes is relative to a subspace of the vector space the s−block of the matrix s lives
in. Of these three modes, the replicon mode is the one which is linked to instabilities
towards s–blocks with mode RSBs (the state splits up as in Fig. 2.1), while the
longitudinal one, for example, gives information relative to spinodal points (the state
opens up along an unstable direction and becomes a saddle), so it is linked to the
MCT transition and threshold states [16], and also with yielding as we are going to
see. However, here we are only interested in the replicon mode.

In summary, we must compute the replicon mode λR = M1, perform its analytic
continuation for s → 0, and check its sign along the solution given by Eqs. (5.21),
(5.22) and (5.20). The computation of the replicon follows the same lines as the one
performed in [12] with only a few modifications, so we skip, again, directly to the
final result and refer to Appendix C for the details. The replicon mode, for s = 0, is:

λR = 1

�2
(−16 − 8ϕ̂g − 8ϕ̂g〈�0(λ)−1L0(λ)〉), (5.40)

http://dx.doi.org/10.1007/978-3-319-60423-7_2
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With

Ls (λ) =
[(

�1(λ)

�0(λ)

)2
− λ

�1(λ)

�0(λ)

][
(2 − 2λ2) + (s − 4)

(
�1(λ)

�0(λ)

)2
+ (6 − s)λ

�1(λ)

�0(λ)

]
, (5.41)

and

�0(x) ≡ �(−x/
√
2), (5.42)

�1(x) ≡ e− 1
2 x

2
/
√
2π, (5.43)

and the average 〈•〉 is defined as

〈O(λ)〉 =
∫ ∞

−∞
DλG(λ)O(λ) =

∫ ∞

−∞
DλD̄mλ′ K (λ′,λ) O(λ). (5.44)

with the kernel K (λ′,λ) defined in the (B.22) and the measure D̄mλ′ in the (B.20).
Now, we must solve the Eqs. (5.21), (5.22) and (5.20) for varying η and γ, and

then compute along the solution the pressure (5.25), the shear strain (5.27), and the
replicon mode (5.40), which will allow us to draw phase diagrams for the glass like
the ones measured experimentally and reported for example in Figs. 3.2 and3c in
[20]. In the following section we present the results so obtained.

5.3 Results

In this section we solve the saddle point equations derived above, and compute the
observables of the glass. We proceed as follows: first we choose a planting density
ϕ̂g , and solve the (5.20) to get the cage radius �. We then solve the (5.21) and (5.22)
for varying η and γ, and compute the value of observables along the solution. We
treat separately the compression-decompression and shear strain case, and we repeat
the procedure for different ϕ̂gs, corresponding to different annealing protocols as
discussed in Sect. 3.1.2.

The equations cannot be solved analytically in the general case, so a numerical
algorithm is required. Our choice is to use the iteration method, and we compute
numerically the integrals appearing in the expressions using the simplest rectangle
method; the integrands (which are essentially error functions or suitable combinations
of them) are implemented numerically using the Faddeeva Library for C++.1

Before reporting the full solution, we first focus on two special limits wherein an
analytical solution can be obtained, providing a check of the numerics.

1http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package.

http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package
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5.3.1 Special Limits

5.3.1.1 Equilibrium Limit

When η = γ = 0, the constrained replicas sample the glass basins in the same state
point as the reference replicas. Therefore, it is reasonable to expect that Eqs. (5.21)
and (5.22) admit � = �r = �g , hence � f = 0, as a solution.

To check this, we first analyze Eq. (5.21). For η = γ = 0, � = �g and � f = 0,
we have �γ(ζ) = 0 and ξ = y + �/2. Therefore the integrand does not depend on
x and ζ and

∫ DxDζ = 1. Then it is clear that Eq. (5.21) becomes equivalent to
Eq. (5.20) and is satisfied by our conjectured solution.

The analysis of Eq. (5.22) is slightly more tricky. Setting η = 0, γ = 0, � = �g

we get, with a change of variable x ′ = x
√

� f + � f /2 (and then dropping the prime
for simplicity):

− 2

ϕ̂g�
=
∫

dy ey�

(
y + �/2√

2�

)m

×
∫

dx
e− (x−� f /2)2

2� f

√
2π� f

1

�
(
x+y+�/2√

2�

) e− (x+y+�/2)2

2�√
2π�

(
x + � f /2

� f

)
. (5.45)

We now observe that

(
x + � f /2

� f

)
e− (x−� f /2)2

2� f

√
2π� f

=
(

− d

dx
+ 1

)
e− (x−� f /2)2

2� f

√
2π� f

−−−→
� f →0

−δ′(x) + δ(x)

(5.46)
where δ(x) is the Dirac delta distribution. Therefore Eq. (5.45) becomes, with some
manipulations

− 2

ϕ̂g�
=
∫

dy ey�

(
y + �/2√

2�

)m ∫
dx

[−δ′(x) + δ(x)
] 1

�
(
x+y+�/2√

2�

) e− (x+y+�/2)2

2�√
2π�

=
∫

dy ey�

(
y + �/2√

2�

)m ( d

dy
+ 1

)⎡
⎣ 1

�
(
y+�/2√

2�

) e− (y+�/2)2

2�√
2π�

⎤
⎦

= m

m − 1

∫
dy ey�

(
y + �/2√

2�

)m−1 (1

2
− y

�

)
e− (y+�/2)2

2�√
2π�

, (5.47)

So, also the equation for � f becomes equivalent equivalent to Eq. (5.20). We con-
clude that for η = γ = 0, the solution of Eqs. (5.21) and (5.22) is � f = 0 and
�g = � for all m, which furnishes us with a starting point for the iteration algo-
rithm.
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A particularly interesting case is when m = 1. In this case the reference replicas
are in equilibrium in the liquid phase, and the constrained replicas therefore sample
the glass basins that compose the liquid phase at equilibrium, like in the real replica
method 4.1. FromEq. (5.25) it is quite easy to see that form = 1,γ = η = 0,� f = 0,
�g = �, one has �γ(ζ) = 0 and ξ = y + �/2 and

pg = d ϕ̂g

2

∫
dy ey

e− (y+�/2)2

2�√
2π�

= d ϕ̂g

2
= pliq . (5.48)

Where we have used the fact that the equation if state of HSs in the MF limit is just
the Van Der Waals one [5]. This shows in particular that the pressure of the glass
merges continuously with the liquid pressure at ϕ̂g , as it should be. 4. The difference
� = sliq − sg then gives the equilibrium complexity �(ϕ̂) of the supercooled liquid.

5.3.1.2 The Jamming Limit

The other interesting limit is of course the jamming limit, whereupon the internal
pressure of the glass state diverges as detailed in Sect. 3.1.3 and correspondingly its
MSD � → 0 [7].
To investigate this limit, we specialize to the case γ = 0 and we consider the limit
� → 0 of Eqs. (5.21) and (5.22). Using the relation

lim
μ→0

�(x/
√

μ)μ = e−x2θ(−x), (5.49)

the leading order of Eq. (5.19) is

sg �d

2

�g + m� f

m�
− dϕ̂g

4�

∫
dy ey �

(
y + �g/2√

2�g

)m

×
∫ η−y

−∞
dx (x + y − η)2

e
− 1

2� f

(
x−� f /2

)2
√
2π� f

= d

2�

⎧⎨
⎩

�g

m
+ � f − ϕ̂g

2

∫
dy ey �

(
y + �g/2√

2�g

)m ∫ 0

−∞
dx x2

e
− 1

2� f

(
x−y+η−� f /2

)2
√
2π� f

⎫⎬
⎭ .

(5.50)

Hence, we obtain that sg ∼ C/� + log� + · · · when� → 0, where the term log�

is explicitly present in Eq. (5.19). Next, we observe that:

• The coefficient C should vanish at jamming. This is because sg = �−1C +
log� + · · · , hence the equation for � is −�−2C + �−1 + · · · = 0, or equiva-
lently−C + � + · · · = 0, which shows that whenC → 0, also� = C → 0. The
jamming point is therefore defined by C → 0. Note by the way that this condition

http://dx.doi.org/10.1007/978-3-319-60423-7_4
http://dx.doi.org/10.1007/978-3-319-60423-7_3
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guarantees that sg ∼ log�when � → 0, which is the physically correct behavior
of the glass entropy because particles are localized on a scale � [7].

• The derivative of C with respect to � f should also vanish, because it determines
the equation for � f at leading order in �.

The two conditions C = 0 and dC/d� f = 0 give two equations that determine the
values of η and � f at the jamming point, for a fixed glass (i.e. at fixed ϕ̂g,�

g,m).
These two equations read

0 = �g

m
+ � f − ϕ̂g

2

∫
dy ey �

(
y + �g/2√

2�g

)m ∫ 0

−∞
dx x2

e− 1
2� f (x−y+η−� f /2)

2

√
2π� f

,

0 = 1 − ϕ̂g

2

d

d� f

∫
dy ey �

(
y + �g/2√

2�g

)m ∫ 0

−∞
dx x2

e− 1
2� f (x−y+η−� f /2)

2

√
2π� f

.

(5.51)

Note that one could get the same equations by taking directly the � → 0 limit
of Eqs. (5.21) and (5.22). This system of two equations determines the values of
the jamming density ϕ̂ j = ϕ̂geη j and the corresponding �

f
j . Note that in general

C ∼ |η − η j | and therefore � = C ∼ |η − η j | vanishes linearly at jamming, as we
will see.

Moreover, from the (5.25) one can see that in the jamming limit

p � �−1. (5.52)

This scaling of the pressure is predicted also by the real replica method [12], always
with the RS ansatz. However, it does not coincide with the scaling p � �−κ reported
in Sect. 3.1.3 and in [21]. This already points towards the fact that the simplest
RS ansatz is not sufficient in the jamming limit and a phase transition to a more
complicated internal structure of the state is present, as wewill show in the following.

5.3.2 Compression-Decompression

We report here the result for compression and decompression protocols, with varying
η and γ = 0. This protocols mimic, for HSs, the DSC experiments discussed in
Sect. 3.1.2.

5.3.2.1 Mean Square Displacements

In Fig. 5.2 we report the evolution of the MSDs (or equivalently, Debye-Waller fac-
tors) � and � f under compression (η > 0) or decompression (η < 0) at γ = 0. In
decompression, we find that � f increases quadratically from zero, while � also

http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_3
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Fig. 5.2 � (top panels) and � f (bottom panels), solutions of Eqs. (5.21) and (5.22), for different
glassy states followed in decompression (η < 0, left panels) and compression (η > 0, right panels).
We use separate scales to improve readability of the figures. The dashed lines indicate the unstable
region wherein the replicon mode is positive (Fig. 5.3)

increases; this is reasonable, since the spheres in the glass become more free to move
when the system is decompressed and� increases as a result. We observe that at low
enough η a spinodal point is met, whereupon the solution disappears with a square-
root singularity in both � and � f ; this behavior is the usual one for spinodal points.
At this spinodal point, the glass ceases to exist and melts into the liquid phase: within
our formalism we recover the onset transition discussed in Sect. 3.1.2 and reported
in [22, 23].

Upon compression, again � f increases quadratically while � decreases, as
expected. If the planting density ϕ̂g is high enough, (see for example ϕ̂g = 8 in
Fig. 5.2), � vanishes linearly at η j while � f stays finite, as predicted by the asymp-
totic analysis of the preceding paragraph. The values of η j and �

f
j coincide with the

ones obtained from the equations in the jamming limit reported in Sect. 5.3.1.
At low density, however (see for example ϕ̂g = 5 in Fig. 5.2) another spinodal

point is met (signaled again by a square root singularity) before jamming occurs (we
mark it with a symbol in Fig. 5.2). We will see in the following that this spinodal
point is unphysical (it does not correspond to a true loss of stability within the glass
state), and it is an artifact of the theory, originated by the fact that we are using the

http://dx.doi.org/10.1007/978-3-319-60423-7_3
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Fig. 5.3 The replicon mode given by Eq. (5.40), for the same glasses as in Figs. 5.2 and 5.4.
Upon decompression the replicon is always negative and the RS solution is always stable; upon
compression, the replicon vanishes at the Gardner transition signaling an instability of the RS
solution

RS ansatz in a region where it is unstable. This unphysical spinodal point has also
been found in spin glasses in a similar setting, see [24].

5.3.2.2 The Replicon and the Gardner Transition

We now focus on the replicon mode. We observe from Fig. 5.3 that upon compres-
sion, before either jamming or the unphysical spinodal point is reached, the replicon
mode becomes positive, signaling that the glass state undergoes a phase transition
as previously discussed, whereupon a more complicated structure of sub-minima
manifests inside it [25, 26].
In principle, the structure appearing within the state could correspond to an arbitrary
level of RSB, and one could check only a posteriori which is the correct number of
steps of RSB of the ansatz corresponding to a stable solution. However, based on
the analogy with spin glasses, and also the results of [26, 27] and the discussion of
sectionC.1, we expect that replica symmetry is broken towards a fullRSB ansatz [28],
corresponding to an infinite number of RSBs and a fractal hierarchy of sub-states
appearing within the original glassyminimum. Such a transition had been discovered
by Gardner in [25] in the context of spin glass models, and it is fittingly referred to
as the Gardner transition. In Sect. 5.4.1 we discuss it in more detail. In all figures,
we report the unstable part of the curves with a dashed line, to remember that the RS
ansatz is unstable in that region.

5.3.2.3 Phase Diagram and Observables

We can finally report (Fig. 5.4) the phase diagram of HSs computed from the SF
construction. The phase diagram in Fig. 5.4 is to be compared with phase diagrams



5.3 Results 117

0.0

0.2

0.4

0.6

0.8

1.0

3 4 5 6 7 8 9 10

Liquid EOS

= 8
= 7
= 6.667
= 6
= 5.5
= 5.25
= 5
= 4.9

d
/p

ϕ̂G

ϕ̂MCT

ϕ̂g

ϕ̂g

ϕ̂g

ϕ̂g

ϕ̂g

ϕ̂g

ϕ̂g

ϕ̂g

ϕ

Fig. 5.4 Following glasses in (de)compression. Inverse reduced pressure d/p is plotted versus
packing fraction ϕ̂ = 2dϕ/d. Both quantities are scaled to have a finite limit for d → ∞. The
liquid EOS is d/p = 2/ϕ̂. The MCT transition ϕ̂MCT is marked by a black dot. The glassy EOS
are reported as full colored lines, that intersect the liquid EOS at the glass transition density (or
equivalently, fictive density [29]) ϕ̂g . Upon compression, a glass prepared at ϕ̂g undergoes aGardner
transition at ϕ̂G(ϕ̂g) (full symbols and long-dashed black line); beyond ϕ̂G our computation is
not correct (as the RS ansatz is unstable there) and glass EOS are reported as dashed lines. For
low ϕ̂g , they end at an unphysical spinodal point (open symbol) before jamming occurs. Upon
decompression, the glass pressure falls below the liquid one, until it reaches a minimum, and then
grows again until a physical spinodal point whereupon the glass melts into the liquid [22, 23]

like those shown in Figs. 1.1, 3.2, 3.3 and 3.5, and the reader can appreciate how the
phenomenology is qualitatively well reproduced by the SF construction. The system
is prepared at low density ρ and then particle volume Vs is slowly increased (or equiv-
alently, container volume is decreased), and the reduced pressure p is monitored. We
plot the reduced pressure p = βP/ρ versus the packing fraction ϕ = ρVs , and they
can be seen as playing the roles of the temperature and enthalpy for the purpose of
comparison with Fig. 3.2. As long as the system is equilibrated, it follows the liquid
equation of state (EOS), which in the MF limit is just the Van Der Waals EOS [5].
At the MCT transition density ϕMCT glasses appear, and the system can fall out of
equilibrium, starting to age in a glass state selected by an equilibrium configuration
at ϕg > ϕMCT .

The slope of the glass EOS at ϕg is different from that of the liquid EOS, indi-
cating that when the system falls out of equilibrium at ϕg , the compressibility has a
jump, as discussed in Sect. 3.1.2 in the case of the heat capacity. Following glasses
in compression, the pressure increases faster than in the liquid (compressibility is
smaller) and diverges at a finite jamming densityϕ j (ϕg). Before jamming is reached,
the glass undergoes the Gardner transition [25, 27], and we can compute precisely

http://dx.doi.org/10.1007/978-3-319-60423-7_1
http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_3
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Fig. 5.5 Left panel Shear modulus versus density for different glasses. Same styles as Fig. 5.4. In
the inset we report μ(ϕ̂g) versus ϕ̂g . Note that the dilatancy R/ρ = (1/2)ϕ̂∂μ/∂ϕ̂ diverges both
at jamming and at the low density spinodal point where the glass melts. Right panel: Dilatancy R
as a function of density for different glasses. Recall that R/ρ = (1/2)ϕ̂∂μ/∂ϕ̂. In the inset, the
evolution of R(ϕ̂g) with ϕ̂g is reported. Note that the dilatancy diverges both at jamming and at the
low density spinodal point whereupon the glass melts

the transition point ϕG(ϕg) for all ϕg . Interestingly, the Gardner transition line ends
at ϕMCT , i.e. ϕG(ϕg = ϕMCT ) = ϕMCT . This implies that the first glasses appear-
ing at ϕMCT (which are the easiest to probe experimentally) are marginally stable
towards breaking into sub-states, while glasses appearing at ϕg > ϕd remain stable
for a finite interval of pressures. Yet, all glasses undergo the Gardner transition at
finite pressure before jamming occurs, in agreement with the results of [27].

A given glass prepared at ϕg can be also followed in decompression, by decom-
pressing it a relatively fast rate tdec such that τβ � tdec � texp. In this case we observe
hysteresis, again consistently with experimental results [22, 23, 30]. In fact, the glass
pressure becomes lower than the liquid one, until the spinodal point whereupon the
glass becomes unstable and melts into the liquid is met. Note that pressure “under-
shoots” (it has a local minimum, see Fig. 5.4) before the spinodal is reached [31],
and the compressibility becomes infinite: this is a result of the MF nature of our
approach. A Maxwell construction should be performed at the onset point in order
to get the right finite-d behavior.

We also report results for the shear modulus, easily deduced from the results for
� reported in Fig. 5.2 using Eq. (5.28), and we can also compute the dilatancy from
Eq. (5.31). The results are reported in Fig. 5.5. Note that R/ρ = (1/2)ϕ̂∂μ/∂ϕ̂ as it
can be deduced by combining Eqs. (5.31) and (5.28). From this last relation one can
easily notice that the singularities in the shear modulus also impact the dilatancy R,
as pointed out in [32]. As a result of this, the dilatancy diverges both at the spinodal
point whereupon � has a square-root singularity (hence infinite derivative) and at
the jamming point where � → 0.
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5.3.3 Shear Strain

We now focus on shear-strain. Our typical protocol will be as follows: we again
anneal the glass former down to a glass density ϕ̂g , however, this time, we apply a
simple shear strain to it instead of quenching it down to a target density ϕ̂ = ϕ̂geη.
This is different from the athermal AQS protocols reviewed in Sect. 3.2.1, and we
will discuss the differences in the final section.

5.3.3.1 Mean Square Displacements and Replicon Mode

We report the results for � and � f in Fig. 5.6. We observe that upon increasing
γ both � and � f increase, until a spinodal point is reached, whereupon they both
display a square root singularity, which is shared by both the shear stress σ and the
glass pressure pg (see Fig. 5.8). Interestingly, their behavior is somewhat specular to
the one found in compression: � stays almost constant for a fairly long range of γs,
while � f immediately grows rapidly. This is reasonable, since the � is nothing but
the Debye-Waller factor of the glass, so we do not expect it to change much upon
shearing, shear strain being a volume-preserving perturbation.

However, before the spinodal is met, the replicon mode becomes positive again
(Fig. 5.7) and the systemundergoes, again, aGardner transition. The fact thatGardner
transition is met when the system is subject to a shear strain might be surprising at
first sight, because one would intuitively think that straining a glass state amount
to a simple deformation of the state, without inducing its breaking into sub-states.
Moreover, the effect of a mechanical drive should intuitively amount to injecting
energy into the system (i.e. a heating or a decompression) as argued for example
in [33].

However, note first that on general grounds, the free energy landscape can change
once perturbations are added [15]. Moreover, we also find (see Fig. 5.8) that the
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Fig. 5.6 Values of � (left panel) and � f (right panel) as functions of shear strain γ. The dashed
lines again indicate the unstable region wherein the replicon mode is positive (Fig. 5.7)
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Fig. 5.7 The replicon mode,
Eq. (5.40), for the same
glasses as in Figs. 5.6 and
5.8. The replicon vanishes at
the Gardner transition
signaling an instability of the
RS solution
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pressure of the glassy state increases when the shear strain is applied, because of
dilatancy [32, 34]. This means that the particles in the glass basins may, upon shear-
ing, become more constrained, triggering an ergodicity breaking inside the state, and
with it a Gardner transition. We discuss further this issue in Sect. 5.4.1.

5.3.3.2 Stress-Strain Curves

We can now draw the stress-strain curves of the glass. We report the behavior of
shear-stress σ and pressure p versus γ, see Fig. 5.8, and observe how they well
reproduce qualitatively the phenomenology reported in [20, 35] and the prevalent
literature on the subject of AQS shear.

At small γ, we observe a linear response elastic regime wherein σ ∼ μγ, as
expected; the pressure increases quadratically above the equilibrium liquid value,
p(γ) ∼ p(γ = 0) + (βR/ρ)γ2. Both the shear modulus μ and the dilatancy R > 0
increase with ϕ̂g , indicating that glasses prepared by slower annealing aremore rigid,
as discussed in Sect. 3.2.1.

Upon further increasing γ, glasses enter a non-linear regime, and undergo a
Gardner transition at γG(ϕg). As it happened in the compression protocol, we find
γG(ϕd) = 0, and γG increasing rapidly with ϕg . For γ > γG(ϕd), the glass breaks
into sub-states and the RS calculation becomes unstable, however, we can anyway
keep following the state. Then, we notice that the RS computation correctly predicts
the stress overshoot, followed by a spinodal point where the glass basin loses stability
and disappears.

The spinodal point corresponds to the yielding point whereupon the glass starts to
flow, as discussed in Sect. 3.2.2, so within the SF formalismwe have ad unambiguous
definition for the yielding point γY ; the values of yield strain γY and of yield stress σY

are found to increase with ϕg , as expected. These results are qualitatively consistent

http://dx.doi.org/10.1007/978-3-319-60423-7_3
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5.3 Results 121

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.1 0.2 0.3 0.4 0.5

2

3

4

5

6

0.0 0.1 0.2 0.3 0.4 0.5

β
σ
/d

γ

ϕ̂g =7
ϕ̂g =6.5
ϕ̂g =6
ϕ̂g =5.5
ϕ̂g =5p

/
d

γ

Fig. 5.8 Following glassy states prepared at ϕ̂g upon applying a shear-strain γ. Shear-stress σ
(main panel) and reduced pressure p (inset) as a function of strain for different ϕ̂g . Same styles as
Fig. 5.4. Upon increasing the strain, the states undergo a Gardner transition at γG(ϕ̂g). For γ > γG
our RS computation is unstable but predicts a stress overshoot followed by a spinodal point

with the experimental and numerical observations of [20, 36], and we will see in
the next chapter that the fRSB computation gives similar results in terms of stress
overshoot and yielding point.

5.4 Discussion

We have performed the computation of the Franz-Parisi potential (4.17), with the
simplest RS ansatz. We show that the state following method is able to give pre-
dictions for many physical observables of experimental interest, and reproduces a
quite large number of observations. These include: (i) the pressure as a function of
density for different glasses (Fig. 5.4), which displays a jump in compressibility at
ϕg [7, 37]; (ii) the presence of hysteresis and of a spinodal point in decompression
in the pressure-density curves, whereupon we show that more stable glasses (those
with higher ϕg) display a larger hysteresis, consistently with the experimental obser-
vations of [22, 23, 30]; the behavior of pressure and shear-stress under a startup
shear perturbation (Fig. 5.8), where we show that (iii) the shear modulus and the
dilatancy increase for more stable glasses (higher ϕg), and (iv) that the shear-stress
overshoots before a spinodal (yielding) point is reached where the glass yields and
starts to flow [20, 36]. Note however that the spinodal (yield) point falls beyond the

http://dx.doi.org/10.1007/978-3-319-60423-7_4
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Gardner transition and therefore its estimate, reported in Fig. 5.8, is only approxi-
mate. Furthermore, (v) we predict that glasses undergo a Gardner transition both in
compression (Fig. 5.4) and in shear (Fig. 5.8), and we locate the Gardner transition
point. Finally, we (vi) compute the dilatancy and the shear modulus everywhere in
the glass phase (Fig. 5.5) and study their behavior close to the jamming transition.

5.4.1 The Gardner Transition

Both in compression and shear strain, we detect an instability in the RS computation
from the study of the replicon mode (5.40). This instability corresponds to a second
order critical point which is referred to as Gardner transition, and corresponds to
a breaking of the glassy state in a fractal hierarchy of micro-states, described by a
fRSB ansatz [15, 28], in a spirit similar to the ferromagnetic transition in Fig. 2.1.
It has been discovered in [25] in the context of the p-spin Ising model (essentially
the Ising spin version of the PSM), and is essentially analogue to the transition
found in the Sherrington-Kirkpatrick spin glass model [38] in presence of a magnetic
field, by de Almeida and Thouless in [39]. The only difference is that in the SK
model the state that undergoes the transition is the ergodic paramagnet, while for the
Gardner transition it is a glass state dynamically selected by an annealing protocol
as previously discussed. The relevant phenomenology is the same in both cases.

The presence of a Gardner transition in a realistic model of glass former is not a
surprise, as it had been already reported in [26, 27], always for hard spheres. As of
today, the nature of the Parisi fRSB solution is still not completely understood, but
some of its phenomenology is well known. Without any doubt, the most physically
relevant trait of the fRSB micro states is that they are marginal [18], which means
that their replicon mode is zero everywhere in the fRSB phase [12].
Thismarginality of the fRSB solution has all kinds of implications. In [26], in particu-
lar, it was shown that the marginality condition of the fRSB solution directly implies
the isostaticity property of jammed packings [40, 41], i.e. packings are predicted
to be isostatic, with z = 2d. This way, the isostaticity property is recovered, within
replica theory, as the manifestation of a critical mode (or equivalently, an infinite sus-
ceptibilty), revealing the jamming transition as a critical phenomenon as anticipated
in Sect. 3.1.3. Moreover, in [26], the fRSB ansatz is also show to be necessary to
compute the critical exponents κ, γ, θ of the jamming transition (Sect. 3.1.3), while
the RS ansatz would for example predict κ = 1 as mentioned before. These findings
show the relevance of the Gardner transition for glasses at low temperatures and high
pressure, at least within RFOT. We must however stress the fact that the “mechan-
ical” marginality related to isostaticity in jammed packings, and the marginality of
fRSB micro states related to the vanishing of the replicon are not the same thing,
although it is clear that they must be connected in some way. Work is still ongoing
to better understand their relation. The results of [26] were obtained within the real
replica method [4] and the isocomplexity approximation, but in the next chapter we
show that they can be more satisfactorily re-derived in the state following setting.

http://dx.doi.org/10.1007/978-3-319-60423-7_2
http://dx.doi.org/10.1007/978-3-319-60423-7_3
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The presence of aGardner transition in shear, however, is a noveltywhich deserves
further investigation and may open new theoretical scenarios for the study of the
yielding transition. As we mentioned, fRSB micro-states are marginal, which means
that just a little perturbation will kick the system outside of a microstate to another,
producing a very intermittent and rough response. This kind of physics looks well
suited to the stress-strain curves in [20] and Fig. 3.9. For example, the fact that the
interval 〈�γ〉 before the first avalanche is met scales as Nβ

iso, with N the system
size and βiso < 1 [42] (i.e. in the thermodynamic limit an infinitesimal strain will
destabilize the system), could be well explained in terms of marginality. There is
however a cardinal difference between the AQS protocols discussed in Sect. 3.2.1
and the ones reproduced here in the SF setting: in AQS protocols the system is
quenched to zero temperature before strain is applied, which means that the glass is
already in the fRSB phase, and fittingly, it immediately responds very roughly like
in Fig. 3.9, while in Fig. 5.8 the strain is immediately applied after preparation at ϕ̂g;
as a result of this, the system is still equipped with thermal energy when subjected
to strain, and the roughness of the PEL responsible for the intermittent response
in AQS protocols is smoothed away by thermal fluctuations, producing a perfectly
elastic response all the way to γG . This prediction is very relevant and should in
principle be easily verifiable, although there is relative paucity of numerical results
for shear of thermal amorphous systems. We will discuss this issue in more detail in
Sect. 8.3.

At the end of the day, though, the Gardner transition first and foremost implies
that a fRSB computation must be performed, in order to follow the less dense glasses
(which we recall are the easiest to prepare) down to the jamming limit, compute their
jamming density, and the critical exponents of jamming. We also need it to check
whether the phenomenology of yielding predicted by the RS ansatz remains the same
when the fRSB one is employed.
In the next chapter we perform the fRSB computation in the state following setting.
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Chapter 6
The Full Replica Symmetry Breaking Ansatz

In the preceding chapter, we have computed the FP potential assuming the simplest
possible replica symmetric ansatz for the slave replicas sampling the bottom of the
followed glassy state. We have then used the so obtained thermodynamic potential
to compute many quantities of interest, including equations of state for the glass,
stress-strain curves, dilatancy and shear modulus, obtaining in all these cases a good
qualitative agreement between the results of our computation and the phenomenology
of glasses reviewed in the first chapters. However, we have also detected, for a
sufficiently large value of both perturbations considered, a Gardner transition inside
glassy states, rendering the RS ansatz unstable in a region of the phase diagram both
in compression and strain. As a result of this, the approach is unable to provide
predictions in a whole region of the phase diagram, as it happens for example for the
EOS of the least dense glasses (corresponding, coincidentally, to shorter and thus
easier to realize preparation protocols) in compression that terminate in an unphysical
spinodal point before jamming can occur. And even where the RS equation of state
exists, it can be at best considered an approximation of the results which must be
derived with the correct ansatz. In this chapter we assume the “correct” ansatz to be
the full replica symmetry breaking one, and perform again the computation of the
FP potential and physical observables within this ansatz.

6.1 The Potential

Our starting point is again the replicated entropy (5.9). The entropic and interaction
(Eqs. (B.15) and (B.16)) terms have the same definition as before. The difference
with respect to the previous chapter is that this time we choose a matrix �̂ab (or
equivalently, α̂ab) in the form
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�̂ =
(

�̂g �̂r

(�̂r )T �̂s

)
, (6.1)

where the matrices �̂g and �̂r are defined as in the (5.11), and the matrix �̂s is now
a matrix with an infinite number of RSBs [1, 2].

6.1.1 The fRSB Parametrization

Let us sketch rapidly how a matrix with an infinite number of RSBs can be parame-
trized in practice. An RS matrix is parametrized by a single element �; as we said
in Sect. 5.1.2, a 1RSB matrix corresponds to having two relevant parameters �1 and
�2, one for each level in the hierarchy of states. Moreover, we also need to specify
how replicas are grouped in the states, i.e. we need to say how many replicas s1 of
the total s we have, end up in the same state at the lowest level of the hierarchy; in
Sect. 5.1.2 we had s = 9 and s1 = 3, which would correspond to a matrix �̂s

�1RSB
ab =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 �2 �2 �1 �1 �1 �1 �1 �1

�2 0 �2 �1 �1 �1 �1 �1 �1

�2 �2 0 �1 �1 �1 �1 �1 �1

�1 �1 �1 0 �2 �2 �1 �1 �1

�1 �1 �1 �2 0 �2 �1 �1 �1

�1 �1 �1 �2 �2 0 �1 �1 �1

�1 �1 �1 �1 �1 �1 0 �2 �2

�1 �1 �1 �1 �1 �1 �2 0 �2

�1 �1 �1 �1 �1 �1 �2 �2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (6.2)

and of course one has also the diagonal elements �d , corresponding to considering
the same replica, whose value depends on how the “similarity” between replicas is
defined.1 A generic (k − 1) RSB matrix will then be parametrized by a set of MSD
parameters �d;�1,�2, . . . ,�k and a set of “block” parameters s1, s2, . . . , sk−1,2

with sk = 1 and s0 = s by definition; every generic kRSBmatrix can be reconstructed
from knowledge of this set of parameters.

One can then construct a function �(x), 1 < x < s, in the following way

�(x) ≡ �k if x ∈]sk−1, sk], (6.3)

which essentially describes the profile of the first row of a generic hierarchicalmatrix.
When the number of breakings k is finite, this function has a step structure. When k
goes up, the function will more and more look like a continuous function, and in the

1For HSs one has �d = 0, while for spin glasses one would have qd = 1.
2Obviously s > s1 > s2 > . . . > sk−1 > 1 when s > 1, and conversely s < s1 < s2 < . . . <

sk−1 < 1 when s is analytically continued to real s < 1 [3].

http://dx.doi.org/10.1007/978-3-319-60423-7_5
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Fig. 6.1 The function �(x) for k = 4 (left) and its expected form for k = ∞ (right). Reprinted
from [5]

limit k → ∞ corresponding to the fRSB ansatz, the function will be a continuous
function of x . In Fig. 6.1 we give a demonstrative cartoon of the function �(x) for
k = 4 and k = ∞.

In summary, every hierarchical matrix, with finite or infinite k, will be parame-
trized by a couple

{�d ,�(x)}. (6.4)

It can be shown [4] that this parametrization preserves all the properties of the algebra
of hierarchical matrices, and formulas for the product and the inverse in terms of the
parametrization (6.4) can be derived. We refer to [1, 4, 5] for further reading on the
issue.

6.1.2 Expression of the Potential and the Observables

Now that we are equippedwith a parametrization for the fRSB ansatz, we are ready to
compute the FP entropy within the fRSB ansatz. As in the RS case, the computation
is long and not very instructive, so we report it in Appendix D, and skip, again, to
the final result. The expression of the entropy of the followed state is

sg[α] =d

2
+ d

2
log

(
π〈�〉
d2

)
− d

2

∫ 1

0

dy

y2
log

( 〈�〉 + [�](y)
〈�〉

)
+ d

2

m� f + �g

m〈�〉
+ dϕ̂g

2

∫ ∞

−∞
Dζ

∫ ∞

−∞
dh eh�

(
h + �g/2√

2�g

)m

(6.5)

×
∫ ∞

−∞
dx ′ f (0, x ′ + h − η + �(0)/2)

e− 1
2�γ (ζ) (x

′−�γ(ζ)/2)
2

√
2π�γ(ζ)

,

with the definitions
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[�](x) ≡ x�(x) −
∫ x

0
dy �(y), (6.6)

〈�〉 ≡
∫ 1

0
dx �(x), (6.7)

� f ≡ 2�r − �g − �(0), (6.8)

and the function f (x, h) obeys the Parisi equation [1]

∂ f

∂x
= 1

2

d�(x)

dx

[
∂2 f

∂h2
+ x

(
∂ f

∂h

)2
]

, (6.9)

with the boundary condition

f (1, h) = log�

(
h√

2�(1)

)
. (6.10)

Again, this form is valid for a generic matrix (that is, a generic profile �(x)) and
must be optimized over �(x) and �r as detailed in Appendix E.

The definitions of the main observables, pressure and shear strain, are the same
as before. For the pressure we have

pg
d

= ϕ̂g

2

∫
dh eh+η−�(0)/2

∫
Dζ�

(
h + η + �r + ζ2γ2/2 − �(0)√

2(2�r + ζ2γ2 − �(0))

)
f ′(0, h),

(6.11)
and for the shear strain we get

βσ

d
= γ

ϕ̂g

2

∫
dh eh−�(0)/2

∫
Dζ ζ2

e
− (h+�r (γ)−�(0))2

2(2�r (γ)−�(0))

√
2π(2�r (γ) − �(0))

(
�r (γ) − h

2�r (γ) − �(0)

)
f (0, h) ,

(6.12)
with the definition

�r (γ) ≡ �r + γ2ζ2

2
. (6.13)

In the following section we report the results obtained by solving the optimization
equations for �(x) and �r and computing the physical observables defined above.
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6.2 Results

6.2.1 Phase Diagrams and MSDs

6.2.1.1 Compression-Decompression

We focus first on the compression-decompression phase diagram, as done in the pre-
ceding chapter. We report it in Fig. 6.2. We can now see that within the fRSB ansatz,
glasses (including those with ϕ̂g = ϕ̂MCT ) can be followed beyond the Gardner
point, all the way to the jamming transition; the unphysical spinodal points that were
predicted by the RS ansatz for the less dense glasses have now disappeared. So, at
least for hard spheres, there is no need to use potentials with three or more replicas to
prevent unphysical spinodal points from appearing within the theory, differently for
what was argued in [6, 7]. In particular, we can now compute the jamming densities
ϕ̂ j for every glass; for the glasses prepared through an annealing down to ϕ̂g = ϕ̂d ,
corresponding to the shortest (and thus easiest) possible annealing protocols, one has

ϕ̂ j (ϕ̂d) 
 7.30.

This is the value of the density of the least dense packings that can be constructed
through an annealing protocol (or equivalently, themost dense that con be constructed
without needing an exponentially long annealing time, Eq. (3.1)). Less dense amor-
phous packings can in principle be obtained with procedures reproducing quenching
protocols, but the computation of their jamming density cannot be performed within
the SF setting, which is conceived for the study of annealing protocols.Wewill return
to the issue in Sect. 8.3.

Fig. 6.2 Following glasses
in (de)compression within
the fRSB ansatz. Glassy
states can now be followed
all the way to the jamming
point, for all planting
densities ϕ̂g
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Fig. 6.3 MSDs for the glass
around the Gardner point for
ϕ̂g = 6.667
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It can also be interesting to study how the MSDs behave near the Gardner point.
Up to the the Gardner transition, the state is a simple minimum and only a single
MSD � is present; afterwards, the fRSB structure manifests, the state becomes a
metabasin of sub-minima, and the MSD becomes a more complicated object �(x),
dependingonhowdeepwego in the fRSBhierarchy as x is varied. In particular, x = 0
corresponds to the MSD �(0) of replicas which are farthest apart and sample the
big glassy metabasin at the top of the hierarchy, while �(1) is the MSD of replicas
which are in the smallest micro states at the bottom of the hierarchy; for historic
reasons and the analogy with the fRSB solution of the SK model, it is commonly
called �E A [1]. The �E A is the Debye-Waller factor of the glass in the fRSB phase.

In Fig. 6.3 we plot the MSD � up to ϕ̂G , and then the values of �(0), � and 〈�〉
(Eq. (6.7)). We can see how the three quantities bifurcate at the Gardner point, with
�E A decreasing in preparation for the jamming transition, whereupon the spheres
enter in contact and�E A → 0. We had mentioned in Sect. 3.1.3 and in the preceding
chapter that the scaling of �E A is that situation is supposed to be �E A 
 p−κ,
where κ is a nontrivial exponent. In order to compute it, and the other two exponents
of jamming γ and θ, one must perform a scaling analysis near jamming of the
optimization equations in the fRSB ansatz (Appendix E). The analysis itself is quite
technical in nature and very similar to the one already performed in [5], so we refer
the interested reader to Sect.E.3 in the appendix, and here we limit ourselves to
saying that the results of [5] are recovered. In particular, one has

κ 
 1.41574

θ 
 0.42311

γ 
 0.41269

as in [5, 8].

http://dx.doi.org/10.1007/978-3-319-60423-7_3
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6.2.1.2 Shear Strain

The phase diagram in strain is reported in Fig. 6.4. One can see that, with respect
to the RS computation of the preceding chapter, the yielding point γY is shifted to
higher values of γ (we replot the RS solution with a dashed line for comparison),
and again a stress overshoot is detected.

However, we are not able to follow glassy states all the way to the yielding point.
The reason for this is that the code we use to solve the variational equations is unable
to approach the yielding point, and loses track of the solution beyond a certain value
of γ that we mark with an empty circle in Fig. 6.4. Differently from the spinodal
points to the RS solution, which were a genuine artifact of the theory, we believe that
this problem is only technical in nature, and can be in principle solved just by using
a more refined code for solving the variational equations in shear. Nevertheless, we
argue that the presence of a yielding point also within the fRSB ansatz is difficult to
refute, despite the technical difficulties.

This view of things is corroborated by the behavior of the MSDs beyond the
Gardner point, which we report in Fig. 6.5. We can see that, beyond the Gardner
point, the MSD �(0) of the glassy metabasin shoots up very rapidly, signaling that
the glassy state is being widened more and more by the shear. Despite this, the MSD
�E A of the micro states within it decreases, signaling that they become more tight.
This is no surprise, since the pressure is actually increasing because of dilatancy as
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Fig. 6.4 Following glassy states prepared at ϕ̂g upon applying a shear-strain γ. With respect to
the RS computation (dashed lines) the yielding point γY is shifted to larger values of the strain
for all glasses. However, we are unable to follows states all the way to the yielding points due
to instabilities in the numerical code for the solution of the variational equations. Despite this, the
stress overshoot is still present (see ϕ̂g = 6) and a yielding point, though not approachable, is clearly
present at higher values of the strain. An empty circle marks the end of curves beyond which the
code is unable to follow the solution



134 6 The Full Replica Symmetry Breaking Ansatz

Fig. 6.5 MSDs for the glass
at ϕ̂g = 6 as shear is applied.
The MSD of the metabasin
�(0) grows rapidly beyond
the Gardner point, while the
MSD of fRSB micro-states
�E A decreases
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one can see in the inset of Fig. 6.4, and we already know that �E A is supposed to be
inversely proportional to the pressure p.

In summary, we argue that the yielding transition is always present in the fRSB
ansatz, and that the picture of yielding as a spinodal point that emerged from the RS
computation remains true in this case, with the only caveat that is must be applied
to metabasin level. The yielding transition corresponds to a loss of stability (or
equivalently, a saddle node bifurcation) at the metabasin level as we had already
surmised in Sect. 3.2.2. This means that the MSD �(0) is supposed to have, near the
yielding point, the square-root behavior

�(0) − �(0)max = −C
√

γY − γ, (6.14)

just like the MSD � at the onset transition. This however is true only for �(0). We
argue that �E A will stay finite (and with it, the pressure) at the yielding point γY , as
the plot in Fig. 6.5 seems to indicate.

6.2.2 Critical Slowing Down

The Gardner transition, despite its peculiarities, is still a second order critical point,
whereupon a phenomenology typical of continuous transitions is supposed to mani-
fest. First of all, suppose to perform a quenching dynamics with an initial condition
within the state, as in [9]. We want to investigate how the dynamics relaxes towards
equilibrium within the metastable state. In the stable glass phase the metastable state
is ergodic (just like the liquid phase above the MCT transition density ϕ̂MCT ) and an
exponential relaxation is consequently observed [9–11], as anticipated in Sect. 3.1.4.
However as the Gardner point is approached, we expect a dynamical slow down

http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_3
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due to the appearance of an internal structure of substates within the metastable
basin. Indeed, at this transition point, the relaxation becomes power law instead of
exponential, a phenomenon well known within the theory of critical phenomena and
dubbed critical slowing down [12]. To fix ideas, let us define a dynamical mean
square displacement

�D(t) = d

N

N∑
i=1

|xi (t) − xi (0)|2 (6.15)

being xi (t) the position of the sphere i at time t . At the Gardner transition point we
have

�D(t) ∼ � − At−a (6.16)

being � the solution of the RS saddle point Eqs. (5.20) to (5.22); the constant A is
expected to be positive. This in turn implies that the relaxation time within the state
obey the scaling [13]

τβ ∝ (ϕ̂G − ϕ̂)−1/a (6.17)

as studied in [10].
We want to compute the exponent a. This is related to the so called exponent

parameter λ [13]

λ = �(1 − a)2

�(1 − 2a)
. (6.18)

It has been shown in [13] that the exponent parameter can be computed from the
replica approach. Indeed it is given by

λ = w2

w1
(6.19)

and w1 and w2 are two cubic terms in the expansion of the free entropy around
the RS solution at the Gardner point, defined in [14]. As proven in Sect.C.3, all
the expressions for quadratic and cubic terms reported in [14] can be reused in the
state following setting, just by redefining suitably the integral measure for computing
averages

〈O(λ)〉RS ≡
∫

dλ O(λ)
e− (λ+√

�)2

2√
2π

−→ 〈O(λ)〉SF ≡
∫

dλ O(λ)G(λ), (6.20)

where G(λ) is defined in Eq. (5.44). We can thus effortlessly write the expression
for λ

λ = −8ϕ̂gw
(I )
2

16/�3 − 8ϕ̂gw
(I )
1

(6.21)

http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_5
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where w
(I )
1 and w

(I )
2 are defined in [14, Eq. (79)]. With some algebra (see [15]), we

get the final result:

λ = −4ϕ̂g A

16 + 8ϕ̂g(1 + B)
, (6.22)

with

A = 〈�−1
0 (λ)�2(λ, 0)〉, (6.23)

B = 〈�−1
0 (λ)�1(λ, 0)〉, (6.24)

and

�2(λ, s) =
[
2

(
�1(λ)

�0(λ)

)3
− 3

�1(λ)�2(λ)

�2
0(λ)

+ �3(λ)

�0(λ)

][
2λ3 + 2(s − 6)

(
�1(λ)

�0(λ)

)3
+

+3
�1(λ)

�0(λ)

[
4λ

�1(λ)

�0(λ)
− (s − 4)

�2(λ)

�0(λ)

]
− 6λ

(
λ

�1(λ)

�0(λ)
+ �2(λ)

�0(λ)

)
+ (s − 2)

�3(λ)

�0(λ)

]
,

�1(λ, s) =
[
1 + �2

1(λ)

�2
0(λ)

− �2(λ)

�0(λ)

]2 [
(s − 3λ2) + (s − 6)

�2
1(λ)

�2
0(λ)

+ 6λ
�1(λ)

�0(λ)
− (s − 3)

�2(λ)

�0(λ)

]
,

(6.25)

and the �k(λ) functions are defined as [14]

�k(x) ≡ 1√
2π

∫ ∞

x
dy yke− 1

2 y
2
. (6.26)

The quantities A and B can be easily computed numerically; we report the results of
the numerical evaluation of the exponents in Table6.1.

Table 6.1 Our results for λ and 1/a for various planting densities ϕ̂g

ϕ̂g λ 1/a

4.8 0.702666

4.9 0.560661 2.65122

5 0.509074 2.54665

5.25 0.437754 2.42661

5.5 0.393779 2.36344

5.87 0.351157 2.30848

6 0.339808 2.29475

6.667 0.295692 2.24461

7 0.280148 2.22805

8 0.246892 2.19440

10.666 0.204280 2.15441
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6.2.3 Fluctuations

Besides critical slowing down, another phenomenology typical of second order crit-
ical points is the manifestation of an infinite susceptibility, which as a rule of thumb
is usually linked to the inverse of the zero mode that signals the transition [12] (in
our case, the replicon).

In Sect. 1.2.5, we discussed the dynamical susceptibility χ4(t) and how it reaches
a maximum at a time t∗ 
 τα corresponding to cooperative relaxation of the system.
In the case of the Gardner point, the situation is similar but there is a very relevant
difference, namely the fact that the transition is second order, and differently from
the MCT transition, is not avoided: the susceptibility converges to a stable static
value, limt→∞ χ4(t) = χ4, which goes to infinity as the transition is approached,
limϕ→ϕ−

G
χ4 = ∞. This divergence can be also used in practice to locate numerically

the Gardner transition, see [10].
To fix ideas, let us define

χ(t) = 〈�2(t)〉 − 〈�(t)〉2 , (6.27)

where the brackets are used to denote the average over the thermal history of the sys-
tem. The χ(t) is a dynamical quantity, but we need to focus on its large time behavior
when 〈�(t)〉 → �. In this case χ(t) → χ4, where χ4 is a static susceptibility

χ4 = 〈�2
ab〉 − 〈�ab〉2, (6.28)

already well known in the context of spin glasses, that can be computed from a static
approach [16, 17].

Within amean field theory, fluctuations like the (6.28) are encoded in the quadratic
term (the so-called mass term) of the field theory that is obtained by expanding the
free energy around the critical point (the Gardner point in this case) [12, 17]. Within
this field theory, the order parameter field is �ab and the “mass matrix” is nothing
but the tensor Ma<b;c<d defined in the (5.32). We need to study the inverse of this
quadratic operator in order to obtain the value of the χ4 susceptibility.

In principle, and as already discussed, thewhole tensorM , with all indices running
form 1 to s + 1 (we always assume m = 1), has to be taken into account. However,
here we are mostly interested with the most divergent part, and not on the finite
corrections. As a result of this, we can again focus only on the tensor M restricted
to the sector of s replicas, Eq. (5.36), that we had already studied in Appendix C for
locating the Gardner transition. The inversion of the tensor Ms is just a matter of
standard linear algebra, so we refer the interested reader to [15] and just quote the
the final result

χdiv
4 = 24

λR
, (6.29)

where λR is the replicon mode, Eq. (5.40). Unsurprisingly, the diverging susceptibil-
ity is inversely proportional to the critical mode at the transition.

http://dx.doi.org/10.1007/978-3-319-60423-7_1
http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_5
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6.2.4 Shear Moduli

The appearance of a fRSB hierarchy within the glassy states has very interesting
consequences in terms of shearmodulus. The reason for this is the following: suppose
that our system is into one of the bottom fRSBmicrostates, with MSD�(1) = �E A.
We now apply a small strain to the system. If the shear is small enough that the
system does not leave the microstate, it will respond elastically with a shear modulus
μ = 1

�E A
. However, if the shear is large enough that the system is kicked out of the

microstate, goes all the way to the top of the hierarchy, and then falls in another
microstate (but anyway within the same glass basin), the response will be described
by a modulus μ = 1/�(0), where �(0) is the MSD of the whole metabasin as
previously discussed. In summary, the presence of a hierarchy of sub-states makes it
necessary to keep track of the fact that the strain may not only act as a deformation of
the minimum the system is in (as it was the case above the Gardner transition where
the glassy state has no structure), but may also cause the system to escape from the
minimum and end up into another [18]. As a result of this, the response of the system
will be described by a generalized, protocol-dependent shear modulus

μ(x) ≡ 1

�(x)
(6.30)

where the relevant value of x depends on how high in the hierarchy the system has
to go to make the jump. This fact is well known in the context of spin glasses where
an external magnetic field and the magnetic susceptibility play the role of the strain
and shear modulus, respectively, but the physical picture is the same [18].

It is obvious that the most important moduli correspond to the two extreme cases
μ(0) = 1

�(0) and μ(1) = 1
�E A

. We are interested in studying their behavior near the
Gardner point. In order to achieve this, we just go for the easiest route and assume
that near enough to the Gardner point, the full profile�(x) can be reasonably approx-
imated with a two-step (1RSB) profile with two MSDs �1 and �2 and two shear
moduli

μ1 = 1

�1
,

μ2 = 1

�2
. (6.31)

We are interested in the behavior of �1 − �2 as a function of the density ϕ̂ near
the Gardner point ϕ̂G , which requires the study of the saddle point equations for the
replicated free energy truncated at cubic order, as done in Sect.C.1. The computations
are just a matter of standard algebra and are again very similar to the study of [5,
Sect.VII], so we skip again to the final result and refer to [15] for details. One gets:
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1

μ1
− 1

μ2
= �1 − �2 ∝ ϕ̂ − ϕ̂G . (6.32)

So the difference between the two moduli is linear in the distance from the Gardner
point. This prediction should be easy to check numerically.

6.3 Discussion

In this chapter we have performed the computation of the Franz-Parisi entropywithin
the fRSB ansatz, describing a glassy minimum wherein a hierarchical, fractal struc-
ture of microstates manifests at the bottom of it, thereby making it a metabasin of
fractal sub-minima [8]. Using this ansatz, we have been able to cure the unphysical
spinodal points that appeared within the RS ansatz, making it possible to follow
glassy states in compression, all the way to the jamming point. For what concerns
yielding, we have been unable to follow the state all the way to the yielding point
because of technical difficulties, but we are anyway able to detect a stress over-
shoot and the presence of a yielding point also within the fRSB ansatz appears to
be irrefutable. We believe that the technical problems can be fixed simply by using
a more refined code to solve our state following equations. Notice however that the
fRSB equations (Appendix E) are Partial Differential Equations (PDEs), so their
numerical treatment is anyway a hard task and an open field of study in numerical
analysis as of today. There may also be another possibility, namely that the equations
near yielding develop a scaling regime as in the jamming case, with an associated
set of critical exponents, rendering possible an analytic study near the yielding point.
However, the presence of such a criticality near yielding is far from established, and
still an open problem [19–22], so more studies will be needed in the future.

There is one very important point to discuss. Throughout this thesis we have stated
multiple times that the result we derive are valid on a timescale texp such that

τβ � texp � τα,

where τβ is the time needed to equilibrate within the glassy states. Within state
followingwith the two-replica potential, we are always looking at equilibriumwithin
the glassy state, no matter which ansatz we use.

Now, in the stable glass phase above ϕ̂G , relaxation within the glassy state is
exponential [9] and the timescale τβ is short enough that any reasonable protocol
has a texp such that the above requirement is met. This however is not true anymore
beyond the Gardner point. We recall the reader that the Gardner transition [23] is
equivalent to the ferromagnetic transition in the SK model [1, 2]; this means that the
dynamics of the system beyond the Gardner point will be characterized by an aging
phenomenology [24] much like the one exhibited by the SK model [1].

This aging phenomenology is extremely rich and as of now still not fully under-
stood. What is certain is that it is a lot more complicated than the aging phenomenol-
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ogy commonly exhibited by structural glasses. Instead of a two-timescale scenario
like the one commonly found in RFOT models, a very complicated hierarchy of
timescales (and with them, effective temperatures) manifests within the dynamics
of systems with a fRSB transition [1, 25, 26]; as a result of this, the system takes a
long time (though not as large as τα of course) to attain equilibration, even within
the glassy metabasin.

In such a situation, a theory aiming to reproduce a realistic laboratory protocol
would focus on the state following of a single fRSB microstate, instead to the whole
metabasin as we have done in this chapter. This is however extremely difficult (and
maybe impossible) to realize in practice, because fRSBmicrostates merge, bifurcate,
and cross evenwhen the perturbation is infinitesimal, an effect well explained in [18];
as a result of this, a two-replica (or even a three-replica) potential is not sufficient
for following a single microstate, and a continuous chain, with an infinite number
of replicas as detailed in Sect. 4.3, is in principle needed. However, a computation
with a continuous replica chain within the fRSB ansatz looks extremely difficult and
perhaps not even doable.

This effect can be easily understood by looking at the stress strain curves in
Fig. 6.4, beyond the Gardner point, and comparing then with the one in Fig. 3.9.
The response in Fig. 3.9 is very rough, as one should expect from a system whose
dynamics takes place in a very disordered landscape. The curves in Fig. 6.4, however,
are smooth, despite the fact thet the system is now moving in a very rough FEL
characterized by a fractal hierarchy of microstates. The reason for this is that in
Fig. 6.4 we are are looking at equilibrium inside the metabasin, so we are effectively
giving the system enough time to explore ergodically all the fRSB sub-minima after
each strain step; from a practical point of view, we are taking various rough shear
histories like the ones in Fig. 3.9 and we are averaging their stress-strain curves,
getting back a smooth response.

In summary, beyond the Gardner point, our SF calculation is only an approxima-
tion of the real dynamics of the system.However, as the numerical results of [10] indi-
cate, the deviations between theory and simulation, in compression-decompression
protocols, are anyway very small. For what concerns shear, our approach is not able
to reproduce the state following of a single inherent structure, as done in AQS pro-
tocols (Sect. 3.2.1), since it looks always at equilibrium within the metabasin. It is
however well suited to the rheology of thermal systems like foams, pastes and soft
matter in general.

6.3.1 Yielding Within the fRSB Ansatz

We conclude the chapter with some comments about the picture that emerges from
our calculation for what concerns the yielding transition. As in the preceding chapter,
the yielding point looks very much like a spinodal point whereupon the state loses
stability and opens up along an unstable direction, becoming a saddle. This is signaled
by a behavior of the intra-metabasin MSD �(0) that looks very much like the one

http://dx.doi.org/10.1007/978-3-319-60423-7_4
http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_3
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exhibited at the onset transition (see Fig. 5.2, top left panel), with a square root
singularity

�1 − �max
1 = −C

√
γY − γ,

as already discussed. However, from Fig. 6.5 we can see that while �(0) shoots up,
the behavior of the other MSDs is milder, and �E A is even decreasing. Thus, as the
metabasin is being widened more and more by the shear, the fractal hierarchy of state
within it survives, and the bottom states with � = �E A are even getting tighter. It is
safe to assume that even when the basin finally opens and loses stability because of
the shear, the bottonmost microstates anyway maintain their form.

This fact is very interesting if one views it in term of shear moduli instead of
MSDs, as detailed in Sect. 6.2.4. As explained in Sect. 3.2.2, the onset of an instability
(and with it, an avalanche) is signaled by a square root-like singularity in the shear
modulus. We have also mentioned, Fig. 3.9, how the curves typically found in AQS
protocols have a somewhat scale-invariant structure, and are made of small segments
which have a general trend similar to the whole stress-strain curve.

This fact can be nicely interpreted in terms of the μ(1) and μ(0) shear moduli: the
shear modulus μ(1) is the one relative to the small segments and to a single inherent
structure, while the shear modulus μ(0) is the one relative to the “elastic” part of the
whole stress-strain curve (see Fig. 3.9 for small γ). The small plastic events would
then correspond to a loss of stability at fRSB microstate level and a singularity in
the μ(1) modulus, while the yielding transition whereupon the system starts to flow
corresponds to a loss of stability within the whole metabasin and a singularity in
the μ(0) shear modulus. In addition to this, one can also see that the curves after
yielding are on average flat (no μ(0) can be defined) but do show an elastic response
on small scales (μ(1) can still be defined). This seems to be in accordance with the
approach to the yielding point within our state following calculation, wherein only
�(0) exhibits a square-root like behavior at yielding while �(1) stays finite.

It is worth of note that the basic phenomenology of yielding seems to be well
captured by our HS model in the MF limit. This appears surprising since one of
the defining traits of MF models is their lack of space structure, while the phenom-
enology of yielding (and in particular of avalanches) seems to be mainly ruled by
local rearrangement modes (we remind the discussion in Sect. 3.2.2), which should
be completely missed by the MF solution. We must however precise that the local
modes are certainly relevant for small avalanches like the ones visible in Fig. 3.9,
while there is no consensus about the localization properties of the rearrangement
modes that separate the elastic part of stress-strain curves from the flowing, steady-
state part. While Eshelby-like [27] modes still seem to be relevant, it is argued in [28]
that a concatenation of many Eshelby modes is necessary to destroy the glass via a
shear-banding process; in this case, the localization properties of the rearrangement
modes may be much more complicated to figure out then how it would be in the
case of a single, simple Eshelby mode, and an effective delocalization effect may
appear. We remind the reader that from the discussion of Sect. 1.2.5, it transpires that
a cooperative, delocalized rearrangement is necessary for glass relaxation. This may
also be the case for driven glasses under shear.

http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_1
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In any case, more work is required to better understand the flow regime beyond
the yielding point.
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Chapter 7
Numerics in the Mari-Kurchan Model

All the results we presented in the preceding two chapters are valid for hard spheres
in the d → ∞ limit. Despite the fact that the physics predicted by the State Follow-
ing approach is in qualitative agreement with the general phenomenology of glasses
reviewed in Chap.3, it would be anyway nice to get a quantitative comparison with
numerical results. Such a program is however difficult to implement as the simula-
tion of a particle system with many spatial dimensions is obviously an endeavor of
considerable computational cost. In this chapter we report a workaround, centered
around a special HS model which has a MF-like behavior also in finite dimension, in
particular dimension three. The model has the advantage of being both analytically
tractable with the replica method and of being very easy to implement numerically,
allowing for a systematic comparison between theory and simulation.

7.1 Model

The model we employ is referred to as Mari-Kurchan (MK) model [1], and its
Hamiltonian is

HMK ≡
∑

i< j

V (xi − x j − Ai j ), (7.1)

where V is any suitable interaction potential (in our case it will be the HS one). The
Ai j are “random shifts”, i.e., quenched, random d-dimensional vectors identically,
independently and uniformly distributed in the d-dimensional cube:

P(A) = 1

V
;

and of course Ai j = A j i .
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Thismodel can be seen asMF inmultiple ways. First, we can notice that themodel
is devoid of any space structure: despite the fact that every particle interacts, given
a certain realization of the As, with a finite number of “neighbors”, those neighbors
can be anywhere in the sample, since the shifts are uniformly distributed in the whole
cube. From this point of view, the model is MF because the physical space the model
is embedded into plays no role on the interactions.

A less intuitive, but more profound line of reasoning stems from considering the
probability of having three particles, say i , j and k, interact with each other at the
same time, i.e., each of them interacts with both the other two at the same time. For
this to happen, we should have, for the HS potential,

|xi − x j − Ai j | � D,

|x j − xk − A jk | � D,

|xk − xi − Aki | � D,

(7.2)

which would imply

|Ai j + A jk + Aki | � D,

which is very unlikely (and, in the thermodynamic limit, outright impossible), since
the shifts are O(L).1 In this model, three body interactions are effectively forbidden:
if i interacts with j , and i interacts also with k, then k and j do not interact with each
other. Thus, the MK model is mean-field in the sense that the network of interac-
tions is tree-like, i.e., there are no loops [2]. Actually, it is indeed the disappearance
of loops for d → ∞ that gives high-d HSs their mean field nature. In that case,
three-body interactions are made impossible for d → ∞ by the high dimensionality
itself [3].

Besides the fact that the model has a MF behavior also for finite d, it has two
more big advantages. First, the presence of a quenched disorder in the form of the
random shifts allows one to implement a procedure, dubbed the plantingmethod [4],
which allows one to obtain thermalized configurations also in the glass phase above
ϕMCT , wherein it would normally be extremely time-consuming to do so, because of
the glassy slowdown. So one can effectively implement an annealing protocol with
arbitrary ϕg with a negligible computational cost.

The basic idea of planting is to invert the order according to which initial par-
ticle positions r i and quenched random shifts Ai j are chosen: first one extracts a
random configuration of particle positions r i , and afterwards the random shifts Ai j

are chosen uniformly, with the sole requirement that spheres do not overlap. In the
liquid phase ϕ ∈ [ϕMCT ,ϕK ], this straightforward process produces an equilibrium
configuration that automatically satisfies the liquid EOS (see [4] for more details).
Since in the MK model the complexity never vanishes and consequently the ideal
glass transition density ϕK goes to infinity, this procedure allows one to produce

1L is the side of the simulation cube.
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equilibrated configurations for any density, with negligible computational cost. A
set of positions {r i } and shifts {Ai j } identifies a sample.

Besides this numerical flexibility, the model can be also easily treated analyti-
cally, in the sense that its replicated entropy (Sect. 4.1) can be computed using the
techniques discussed in [5]; the result is exact only for infinite d [6], but for finite
d it constitutes an anyway excellent approximation, as we are going to see and as
discussed in [7]. The computation of the replicated entropy of the MK model is
reported in full detail in [2], so we just report the final result, for an RS ansatz:

s[m,ϕ, A] = − log ρ + log N + Sharm(m, A) − 2d−1ϕ[1 − Gm(A)], (7.3)

where A is the cage radius, A ≡ D2

2d �, Sharm is defined as

Sharm(m, A) ≡ (m − 1)
d

2
log(2πA) − d

2
logm + d

m − 1

2
, (7.4)

and the function Gm(A) is defined in [2, 5]. The reader is invited to appreciate the
similarity with the expression (5.9) for s → 0. Indeed, for d → ∞ the (7.3) reduces
to the (5.9) computed with the RS ansatz [6]. As the (5.9), this expression must be
optimized over A to obtain the physical replicated entropy S(m,ϕ).

7.2 Results

The MKmodel defined above is a very convenient test bed for the theory exposed in
this thesis. We now report some results obtained with numerical simulations of the
model, contained in Ref. [7, 8]. Those studies have a larger scope and contain much
more material than reported here, so we refer to them for further reading.

Simulations are always performed following the same basic guideline: first, an
equilibrium configuration is produced through planting at a certain planting density
ϕg (ϕ0 in the notation of [7, 8]); then a compression (decompression) protocol is
implemented by inflating (deflating) the spheres with the LS algorithm [9]. This
way, a state following procedure in compression/decompression is reproduced. To
our knowledge, a similar numerical procedure has not been implemented for State
Following under quasi-static shear, though it would be an obvious continuation of
the studies [7, 8] that we leave for future work.

7.2.1 Isocomplexity

As a warm-up exercise we first derive the equations of state of the glass through
the isocomplexity approximation [8], Sect. 4.1.2, also for the sake of comparison
with the more refined State Following computation. We then compare the analytical
results with numerical simulations of anMKmodel in d = 3 with N = 800 particles

http://dx.doi.org/10.1007/978-3-319-60423-7_4
http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_4
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Fig. 7.1 Equations of state
of various glasses as in
Fig. 5.4. The lines are theory
and the dots are simulation
data as described in [8]. A
satisfactory agreement
between theory and
simulation can be observed
already with the simplest
isocomplexity computation
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of diameter D = 1 and periodic boundary conditions. Since we focus only on ther-
modynamic, self-averaging observables (see the discussion of Sect. 4.2), only a small
number of samples, Ns = 6, is needed to perform ensemble averages. The dynamics
is implemented through a Metropolis algorithm and compression-decompression is
implemented through inflation-deflation of the spheres as in the LS [9] algorithm.

To perform the derivation of glassyEOS, one just needs to compute the complexity
and in-state free energy using Eqs. (4.7) and (4.8) (we recall that the prescription is
S = −β�) and then implement the isocomplexity approximation by solving the
(4.12); more details are given in the SI of [8].

In Fig. 7.1we report the results obtained; as in Fig. 5.4, we plot the inverse pressure
1/p versus the packing fraction ϕ for various planting densities ϕ0. Notice that the
quantities are not rescaled anymore as in Chaps. 5 and 6, as now we are in d = 3.

Overall, one can see that a good agreement with simulation is already visible,
even with isocomplexity approximation. Despite the fact that it is a lot less flexible
and rigorous than the SF formalism, the theory is anyway satisfactory enough, at
least at the level of thermodynamic observables.

Since the isocomplexity approximation (and the real replica method in general)
are a lot less mathematically convoluted than the SF formalism, it is easy to study
the singular behavior of the cage radius at the onset point whereupon the glass state
melts back into the liquid. One gets:

A(ϕ) = Amax − C
√

ϕ − ϕon, (7.5)

where the coefficient C depends onm and can be computed easily (see the SI of [8]).

7.2.2 State Following and the Gardner Transition

As mentioned before, the MK model for d → ∞ is quantitatively and qualitatively
identical to mean-field HSs. In finite dimension, some corrections have to be taken

http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_4
http://dx.doi.org/10.1007/978-3-319-60423-7_4
http://dx.doi.org/10.1007/978-3-319-60423-7_4
http://dx.doi.org/10.1007/978-3-319-60423-7_4
http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_6
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Fig. 7.2 Equations of state of a glass planted art ϕ0 = 2.5, (ϕ̂g = 6.667 in ∞ − d units), and
ϕ0 = 4. Hopping effects are negligible in both cases. The lines are theory and the dots are simulation
data as described in [7]. (Inset) though a larger compression rate smooths away the singular behavior
at the onset point, its effects on the pressure in a compression protocol are effectively negligible as
long as ϕ < ϕG

into account with respect to the∞ − d result. The most important finite-dimensional
effect in theMKmodel lies in the fact that caging is not perfect in the glass phase, and
particles are effectively free tomove in a network of cages aswell studied in [10]. This
effect washes away theMCT singularity atϕMCT , but since hopping is exponentially
suppressed in ϕ, it produces relevant effects only for ϕ0 � ϕMCT . Once the effect of
hopping has been removed by focusing on higher ϕ0s, the corrections with respect
to ∞ − d are effectively only quantitative in nature. So, for the sake of comparison,
we can just take the SF results exposed in the preceding chapters, paying attention
to rescaling the quantities in the correct way (for example ϕ = d

2d ϕ̂).
The study of [7] is performed with the same basic numerical setup as the one of

[8], though with the aim of verifying the prediction of the presence of a Gardner
transition in compression; comparison with the SF results reported in the preceding
chapters is also reported (with the proper rescaling as discussed above). A first check
of the SF procedure is reported in Fig. 7.2, where the effect of the compression rate on
themeasured glass EOS is also considered. Its effect on the pressure in a compression
protocol is effectively negligible as one can see in the inset of Fig. 7.2. This is to be
expected as the relaxation time within the state τβ is expected to be very small as
long as ϕ < ϕG .

7.2.2.1 Dynamics

A non-trivial and rich aging phenomenology manifests in the fRSB phase [11]. To
better explore the complex free-energy landscape structure that is associated with
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the fRSB ansatz, it is convenient to define two instantaneous quantities. The first is
the MSD between configurations at different times

�̂(t, tw) ≡ 1

N

N∑

i=1

|r i (t + tw) − r i (tw)|2, (7.6)

where the waiting time is the time elapsed since the end of the compression protocol,
as in Sect. 3.1. The second is theMSD between two different “cloned” configurations
A and B

�̂AB(t) ≡ 1

N

N∑

i=1

|r Ai (t) − r Bi (t)|2. (7.7)

The “cloning” procedure works as follows: before the compression starts, an equi-
librated planted configuration is duplicated ({r A(0)} = {r B(0)}), but each of the
two instances is given a different set of initial velocities, randomly drawn from the
Maxwell distribution. The two configurations are then compressed independently.
This way, A and B will evolve inside the same glass metabasin (which as we recall
from Sect. 4.2 is selected by a single equilibrated configuration) but will have inde-
pendent compression histories. They will thus serve as a probe of the metabasin
structure, in the same fashion as the replicas discussed in Sect. 6.1.1.

These instantaneous quantities are to be averaged over the statistical ensemble of
samples:

�(t, tw) ≡
〈
�̂(t, tw)

〉
�AB(t) ≡

〈
�̂AB(t)

〉
. (7.8)

The number of samples varies from Ns = 500 to Ns = 15000 depending on the
statistical convergence properties of the observable under consideration. It is also
convenient to define a quantity

δ�(t, tw) ≡ �AB(t + tw) − �(t, tw). (7.9)

If the system is in restricted equilibrium (and so tw is large enough) in the RS
phase above the Gardner transition, we have basically the same caging picture of
Fig. 1.5

lim
t→∞ �(t) = �, (7.10)

where � is the Debye-Waller factor computed in Chap.5. The only difference is that
in this case we are looking at theMSD inside the glass (as opposed to the supercooled
liquid), and so we are unable to see the diffusive regime as in Fig. 1.5. Accordingly,
since the system is able to explore ergodically the glass basin, one will have

lim
t→∞ �AB(t) = �, (7.11)

and as a result of this

http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_4
http://dx.doi.org/10.1007/978-3-319-60423-7_6
http://dx.doi.org/10.1007/978-3-319-60423-7_1
http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_1


7.2 Results 151

lim
t→∞ lim

tw→∞ δ�(t, tw) = 0. (7.12)

The picture changes in the fRSB phase ϕ � ϕG , wherein aging manifests and equi-
librium within the metabasin is out of computational reach (the time τmeta needed to
achieve restricted equilibration is expected to scale as exp(N 1/3) [12], well beyond
the length of simulations considered in [7]). In this case, the systemwill initially equi-
librate in one microstate at the bottom of the fRSB hierarchy, so the MSD �(t, tw)

will reach a short plateau, �(t, tw = 0) = �E A for t � τmeta(tw) and t > τ0, where
τ0 is the typical timescale for the ballistic regime. Thereafter, the system will start
to explore the fRSB hierarchy, visiting higher and higher levels of it and hopping
over larger and larger free energy barriers. Since the hierarchy of sub-states is frac-
tal (k = ∞), the system will continuously surmount barriers until equilibration is
reached (continuous aging) instead of attaining it in a simple step-like manner as it
would with a finite number of RSBs (Sect. 1.2.3). As a consequence of this, �(t, tw)

will drift upwards for all observable times after leaving the initial plateau corre-
sponding to �E A.

For what concerns �AB(t), the two copies have different compression histo-
ries, as we already mentioned; this means that they will usually end up in different
microstates, and so the long-time limit of �AB(t) will correspond to the average
distance 〈�〉 between microstates. This means that in the Gardner phase

lim
t→∞ lim

tw→∞ δ�(t, tw) �= 0, (7.13)

which provides a dynamical order parameter for the Gardner transition. Notice that
in general �AB(t + tw) > �(t, tw) for every t . However, since equilibration is never
reached �AB(t) as well slowly drifts (the drift can be observed for every simulation
time) without ever reaching a plateau. In Fig. 7.3 we report the results obtained,
which follow the basic phenomenology described above.

From this picture, it transpires that if one chooses ts such that τ0 < ts � τmeta ,
then �(ts, tw = 0) can be used as an estimator for �E A and �AB(ts) for �1, and
then one can compare the so obtained results with the theoretical prediction for
the bifurcation of MSDs presented in Fig. 6.3. In particular, one can verify if �(0)
increases after ϕG as predicted. In Fig. 7.4 we report the results so obtained, with
again a satisfactory agreement between theory and simulation.

Besides this, it certainly would be appropriate to get also a check of the behavior
in shear, Fig. 6.5, and in particular the decreasing of �E A when γ > γG . We leave
the issue for future work.

7.2.2.2 Locating the Gardner Point

Apart from the check of the equations of state and dynamics of MSDs, the numerics
of [7] are also able to robustly locate the Gardner points for various planting densities
ϕ0 and to verify that their position on the glassEOSs is compatiblewith the theoretical

http://dx.doi.org/10.1007/978-3-319-60423-7_1
http://dx.doi.org/10.1007/978-3-319-60423-7_6
http://dx.doi.org/10.1007/978-3-319-60423-7_6


152 7 Numerics in the Mari-Kurchan Model

Δ
A

B
( t

)

(a)

10
−4

10
−3

10
−2

Δ
(t

,t
w

=
0)

(b)

10
−5

10
−4

10
−3

10
−2

10−2 10−1 100 101 102

δΔ
( t

, t
w

=
0)

t

(c)

ϕ = 2.80
ϕ = 2.85
ϕ = 2.90
ϕ = 2.95

ϕ = 2.97
ϕ = 3.00
ϕ = 3.05
ϕ = 3.10

10−2 10−1 100 101 102 103 104

Δ
A

B
(t

)

t

(a)

10
−4

10
−3

10
−2

Δ
(t

, t
w
)

(b)

10
−4

10
−3

10
−2

10−1 100 101 102 103

δΔ
( t

,t
w
)

t

(c)

ϕ = 2.88
ϕ = 2.90

ϕ = 2.92
ϕ = 2.95

ϕ = 3.00
ϕ = 3.10

ϕ=2.85 tw =0
tw =10
tw =80

tw =640

ϕ=3.00 tw =0
tw =10
tw =80

tw =640

ϕ=3.10 tw =0
tw =10
tw =80

tw =640

Fig. 7.3 Dynamics in a glassy state planted at ϕ̂g = 6.667, for densities in the vicinity of the
Gardner transition, for tw = 0 (left panel) and tw �= 0 and large times (right panel). When ϕ < ϕG
(here ϕG � 3.0 as reported in the following), the MSDs �(t, tw) and �AB(t) rapidly attain their
equilibrium value (�AB(t) is effectively independent of time), δ�(t, tw) decays to zero at long
times and no dependence on tw is observed: the system is in restricted equilibrium (solid lines are
fits to Eq. (7.15)). When ϕ � ϕG , the MSDs drift for all observable times without ever attaining a
plateau value, and δ�(t, tw) remains positive; amarked dependence on tw is observed, especially for
high density: the system is continuously aging inside the glassy metabasin, signature of a Gardner
phase. Notice how the relaxation time τmeta(tw) grows with tw , another typical signature of aging
(Fig. 3.1)

prediction in Fig. 5.4. Three different methods are used, here we just give the basic
picture and refer to [7] for details.

The first focuses on dynamics above theGardner point, in particular the power-law
divergence of the relaxation time due to critical slowing down, Sect. 6.2.2. Besides
the qualitative picture of the dynamics exposed in the preceding paragraph, one can
also try a more quantitative analysis following the lines of the classic work [11] of
Ogielski on spin glasses and the theoretical scheme for glassy dynamics developed
in [13]. The basic idea is to extract the relaxation timescale τβ from the decay of the
δ�(t, tw) on approaching the Gardner transition from above. Since this timescale
diverges as a power law in the distance δϕ ≡ |ϕ − ϕG | from the transition as a
consequence of critical slowing down, it can be used to locate the Gardner point ϕG

http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_6
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Fig. 7.4 MSDs for the glass
around the Gardner point for
ϕ̂g = 6.667. The lines are
theory and the dots are
simulation data as described
in [7]. �1 ≡ �(0) in the
notation of [7]. Both the
theoretical and the numerical
datasets have been rescaled
with their value �(ϕ0) on
the equilibrium line 0.2
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as shown in the following. Notice that this scheme is then well defined only in the
RS phase. According to the theory developed in [13], upon approaching the Gardner
point from above while in restricted equilibrium in the RS phase, one must have

δ�(t) � δϕF(t/τβ), τβ � δϕ−γ, (7.14)

where F(x) is a function such that F(x � 1) � x−a while F(x � 1) decays expo-
nentially, and the exponents a and γ = 1/a are those defined in Sect. 6.2.2; notice
how δ�(t) does not depend on tw here, as we are in the RS phase where aging is not
present.

We can estimate τβ by choosing the empirical form [11] F(x) ∝ x−ae−xb , which
means fitting δ�(t, tw = 0) to the form

δ�(t, tw = 0) = c
exp[−(t/τ ′

β)b]
ta

, (7.15)

where all parameterswill depend onϕ andϕ0 ≡ d/2d ϕ̂g , and τ ′
β offers a first estimate

of τβ . We fit the exponent a instead of fixing its value to the analytical prediction
reported in Table6.1, since the value of a away from the transition is quite different
from the critical value, as one can appreciate by looking at the linear part of the plots
in the lower left panel of Fig. 7.3.

The relaxation time τβ is then expected to scale as

τβ ∝ |ϕ − ϕτ
G |−γ,

which gives a first estimate of ϕG . This time, we fix the value of γ to the analytic
prediction and we fit ϕτ

G to get a first estimate of the transition point (see Fig. 7.5
for the results). To get a better check on our result, we also estimate τβ through the
logarithmic decay of the δ�(t) at long times (see Fig. 7.6):

http://dx.doi.org/10.1007/978-3-319-60423-7_6
http://dx.doi.org/10.1007/978-3-319-60423-7_6
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Fig. 7.5 a Growth of τ ′
β

with δϕ for various planting
densities ϕ0. b The two
estimates τ ′

β e τ ′′
β as a

function of δϕ for ϕ0 = 2.5;
both exhibit the same
power-law scaling.
c Evolution of the fitted a
and b exponents with ϕ,
again for ϕ0 = 2.5
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Fig. 7.6 Logarithmic decay
of δ�(t, tw = 0) for
ϕ0 = 2.5. The data are fitted
to Eq. (7.16)
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δ�(t, tw = 0) = k

[
1 − ln(t)

ln(τ ′′
β )

]
, (7.16)

where in this case we fit τ ′′
β and k. From inset (b) in Fig. 7.5, one can see how the

growth of both estimators τ ′
β and τ ′′

β is compatible with the same power-law scaling,
which supports our claim that the slowing down is a manifestation of an underlying
second-order transition.

The second method focuses on static properties below the Gardner point. Let
us suppose to prepare two initial configurations for the simulation, each of them
identified by a 2Nd-dimensional position-velocity couple (r, v). The configuration
of the r is obtained though the planting method and is the same for both, while the
velocities are extracted at random from the Maxwell distribution. This procedure
defines two clones of the same initial configuration. One can then define a MSD
between clones
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Fig. 7.7 The critical
susceptibility χ4 near the
Gardner point for three
different planting densities.
Lines are the theoretical
prediction while the symbols
are numerical data.
ϕ0 ≡ d/2d ϕ̂g in the notation
of [7]
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Since in the fRSB phase the glass state breaks up in a fractal hierarchy of sub-states,
usually the two replicas will not end up in the same state. One can measure the
long-time limit of �AB(t) and construct an histogram P(�AB) which will describe
the structure of the glass metabasin. Proven that finite-size effects are accounted for
[7], the two replicas sample the Parisi probability distribution P(�) [14]. One can
than prove that its variance χAB obeys

χAB ≡ N

〈
�2

AB

〉 − 〈�AB〉2
〈
�2

AB

〉2 = 〈�2
ab〉 − 〈�ab〉2
〈�ab〉2

= χ4

�2
. (7.18)

We recall that the divergent part of the χ4 susceptibility is the χdiv
4 = 24

λR computed in
Sect. 6.2.3. Thus, the numerical χAB is supposed to diverge as χAB � (ϕG − ϕ

χ
G)−1

since the replicon vanishes linearly at the Gardner point (see Fig. 5.3). This provides
another estimator for ϕG , and also a way to measure the critical χ4 susceptibility
(see Fig. 7.7).

The third method uses again the P(�AB), but focuses on another parameter, its
skewness � whose definition is

� ≡
〈
(�AB − 〈�AB〉)3〉

〈
(�AB − 〈�AB〉)2〉3/2

, (7.19)

this quantity is supposed to be maximal at the Gardner point, so one can get another
estimate ϕ�

G .
In Fig. 7.8 we finally report the results for the Gardner point obtained with these

three estimates. The reader can appreciate how all three estimates give compati-

http://dx.doi.org/10.1007/978-3-319-60423-7_6
http://dx.doi.org/10.1007/978-3-319-60423-7_5
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Fig. 7.8 The Gardner
transition points located with
the three different estimators
ϕτ
G , ϕ

χ
G and ϕ�

G . The
numerical estimate is robust
and consistent with the
theoretical prediction
reported in Chap.5 1/

p

ϕ

ϕG

ϕΓ
G

ϕχ
G

ϕτ
G

ϕ0

ϕJ

ble values for different planting densities ϕ0, and how those are compatible with
the Gardner line reported in Fig. 5.4. Only the estimate for the ϕ0 = ϕMCT is off
(although anyway very robust), which can be attributed to the hopping effects which
show up prominently near ϕMCT and may spoil the numerical result.

In summary, the prediction of a Gardner transition in HS under compression [15–
17] is validated at least for a MF glass former, in this case the infinite range MK
model. Work is ongoing in this moment to prove its existence also for ordinary HSs
in finite d, and a study in the same spirit for HS under shear will be the logical
continuation of the research effort started in [7, 8].
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Chapter 8
Conclusions

In this final chapter, we summarize our main results and predictions and give an
assessment of the strengths and weaknesses of the state following construction, and
RFOT as a whole. Finally, we conclude the thesis with some perspectives and pro-
posals on further research inspired by the present work.

8.1 Summary of Main Predictions

Our state following approach is able to provide many interesting predictions which
fit well within the phenomenology of glasses explored in the first two chapters. These
include:

1. The basic phenomenology of the calorimetric glass transition (Sect. 1.2.1), with
a jump in heat capacity (or equivalently, compressibility), is captured by our
approach.

2. We are able to compute from first principles the equation of state of a generic
glass preparedwith a generic annealing protocol (Sect. 3.1), reproducing the basic
phenomenology of glasses as observed in DSC experiments (Sect. 3.1.2), in par-
ticular those on ultrastable glasses [1–5]. We are able to observe hysteresis in
agreement with the results of [1, 2, 6], and the onset transition whereupon the
glass melts back into the liquid at high temperature is well reproduced.

3. The Gardner transition detected in [7, 8] is recovered within the state follow-
ing approach, along with the results concerning the isostaticity and marginal-
ity of jammed packings and the critical exponents of the jamming transition
(Sect. 3.1.3). We are also able to compute the jamming density ϕ j for generic
disordered packing constructed with an annealing-like (i.e. reasonably slow) pro-
cedure [9, 10].

© Springer International Publishing AG 2017
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4. We are able to compute from first principles stress-strain curves of the glass and
obtain again a phenomenology in agreement with simulations and experiments
(Sect. 3.2); our approach reproduces the presence of a stress overshoot [11–14]
and a yielding point (Sect. 3.2.2) whereupon the glassy state dies and the glass
former starts to flow [11, 15]. We are able to compute the Debye–Waller factor,
the shear modulus [16] and the dilatancy [17, 18] everywhere in the glass phase.

These results indicate that the state following approach is at least a good starting
point for a first principles theory of glasses prepared via slow coolings.

In addition to this, we can also provide some novel predictions which make for a
good test bedof the theory andmayallowone to validate/falsify it through simulations
and experiments:

1. We detect the presence of a Gardner transition for high enough values γG of
the strain perturbation (Sect. 5.3.3), for every preparation density ϕ̂g . From the
practical point of view, this means that the response of a glass to the strain is
elastic and solid-like only up to γG . Afterwards, the fRSB structure manifests
within the state and the system will start to jump from a microstate to the other in
a non-equilibrium fashion, producing a rough response with avalanches like the
one that can be seen in Fig. 3.9 for athermal materials. In summary, we argue that
an avalanche-dominated regime with energy dissipation is bound to appear, for
high enough strains, also in thermal systems, no matter which their preparation
temperature is. In this regime, as one can see from Fig. 6.5 the Debye–Waller
factor �E A decreases and consequently the μ(1) shear modulus (which is the
slope of the small elastic segments between avalanches) increases. All of these
are novel predictions that should be easily verifiable.

2. We predict the insurgence, in the Gardner phase, of a set μ(x) of shear moduli
(Sect. 6.2.4), with a scaling relation μ(0) − μ(1) ∝ (ϕ̂ − ϕ̂G). It can be argued
that the μ(1) modulus corresponds to the average slope of a stress strain curve,
while the μ(0) corresponds to the slope of small elastic segments like in Fig. 3.9.
This is true both for athermal systems (which are already in the Gardner phase
when shear is applied) and thermal ones beyond the Gardner point induced by
the strain itself.

3. We compute critical slowing down exponents and critical fluctuations around the
Gardner Point for various preparation densities ϕ̂g. A first encouraging test of
these results can be found in [19], for the MK model discussed in the preceding
chapter.

8.2 Strengths and Weaknesses of Our Approach

The state following theory presented in this thesis has somevery appealing traits. First
of all, it allows one to perform theoretical physics calculations on glasses using only
tools of standard statistical mechanics, like partition functions, free energies, large
deviations and saddle-point methods, etc., and only requires, as an input, a micro-
scopic interaction potential. In addition to this, it is also completely static in nature,

http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_5
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http://dx.doi.org/10.1007/978-3-319-60423-7_6
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which is a very welcome feature considering that the established theory for the first
principle dynamics of glass formers has been, up to very recently, theMode Coupling
theory, whose flaws and weaknesses (especially in the low-temperature/high density
regime) are well known. There is no need to employ dynamics, or phenomenological
arguments, or parameter tunings of any sort. The state following construction brings
everything back to the definition of a suitable Gibbs measure for the statistical-
mechanical study of metastable, out of equilibrium glassy states. In summary, it
cleverly exploits the basic picture of RFOT to bring back the problem of describing
out of equilibrium glass to an equilibrium formalism. And despite these aspects of
theoretical “cleanliness”, it still provides predictions in remarkable agreement with
the phenomenology of glasses.

However, it also has some weaknesses, both technical and conceptual. On a con-
ceptual level, the SF construction always assumes restricted equilibration of the glass
former within a glassy state. As a result of this, is only able to provide predictions in
regimes where such equilibration is effectively attained, i.e. when perturbations are
adiabatically applied to the glass.

However, the experimental literature on glasses (see [6, 20] and references therein)
is teeming with experiments and protocols which do not meet this requirement. This
is particularly evident in the case of driven dynamics, wherein time dependent shear
protocols are prettymuch the norm. A steady shear rate γ̇ = const must be employed
for the determination of the flow curve, and oscillatory shear protocols are used for
the determination of the storage and loss moduli G ′(ω) and G ′′(ω) [16, 21]; in both
these cases, the perturbation changes with time and is not applied adiabatically.

Also in the case of simple aging, one could for example consider applying AC
currents to measure dielectric relaxation spectra as done for example in [22, 23]. All
such situations cannot be described within the state following setting.

The main technical difficulty lies in the fact that the state following approach is
quite heavy from the computational point of view (the size of the appendix is probably
a giveaway on this point), already at two-replica level; performing calculations with
the replica chain, for example, looks feasible only for the simplest spin glass models
like the PSM. This is part of the reason why we had to focus on the mean-field
limit d → ∞; just by looking at the expression (4.17) of the Franz-Parisi potential
one can understand how going beyond the MF calculation is a hard and perhaps
impossible task; some proposals on how to do so are formulated in [24, 25], but
there is no systematic perturbation scheme and it is very difficult to understand
how big of an error one is committing in considering these approximations. This
weakness is however shared also by other sectors of theoretical physics wherein a
small perturbation parameter is difficult to identify [26].

8.2.1 The Current Status of RFOT

However, the reliance of RFOT on MF concepts is not only a technical, but also a
conceptual problem. The RFOT is clearly an impressive piece of theoretical physics:

http://dx.doi.org/10.1007/978-3-319-60423-7_4
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it provides an elegant and easy to grasp picture of the glassy slowdown, and is able to
make very different observations and theoretical inputs (in some cases produced by
completely unrelated scientific communities, such asMCT [27] and spin glass theory
[28]) fit together in a coherent way. It also comes with a set of tools, in the form
of the replica method, for performing first principles calculations [29, 30] (a trait
which is not shared by other approaches such as Dynamical Facilitation Theory and
Frustration Limited Domains), and it has proven to be able to provide quantitative
predictions for problems which were, originally, outside of the domain wherein it
was initially conceived, such as the jamming problem [31–33].

Despite these many strengths, RFOT is still struggling to break out of the mean-
field domain wherein it originally appeared; as a matter of fact, much of the research
work that is produced today by the RFOT community is aimed at understanding
non-MF effects, and the strongest criticisms which are today moved to RFOT are
centered around the claim that the theory cannot be valid beyond mean-field.
Indeed, for much time there were no finite dimensional models wherein the RFOT
picture could apply (the very first proposal for such a model is very recent [34]),
a difficulty which is shared by the replica theory of spin glasses; in both cases, the
existence beyondmean field of replica symmetry breaking, and the Parisi picture that
comes with it, is still a matter of intense debate and simulations performed on finite-
dimensional models are not conclusive. This MF-bound character of RFOT can be
also found in the scenario where RFOT works best, namely the jamming problem.
In [35], it is shown how the RFOT computation of [8] fails to account for localized
excitations within packings, and as a result of this, localized excitations must be
numerically removed in order to recover from simulations the predicted value of the
exponent θ of the force distribution. This incapacity of taking into account localized
excitations is very much to be expected from a MF theory. However, while in the
case of jamming it is possible to disentagle localized and extended modes, this does
not look easy in the case of yielding, whereupon the relevant modes really seem to
be localized ones [36].

On a more technical side, importing non-MF effects within RFOT also amounts
to understanding how the physics of the MCT and Gardner transitions are modified
in finite dimension. In the case of MCT, it is still not very clear what is the actual
mechanism that transforms the transition into a crossover; while there is consensus
on the viewpoint that MCT is a MF-like theory [37, 38] unable to take into account
activation mechanisms, there are indications that activation may be already at play
in the regime above TMCT [20, 39, 40]. Some attempts have been made to include
activation effects within MCT, but their results are subject of debate, see for example
[41]. It is even argued in [42] that the MCT transition is destroyed by critical fluctu-
ations instead of activation, so the problem is still very much open.
For what concerns the Gardner transition, its presence in finite dimensional systems
is still to be proven. Since it is a second order critical point, a renormalization group
study of the transitionmust be performed to understand howand if its physics changes
in finite dimension. Such an attempt has been made in [43] using perturbative tools,
but the results are quite odd. The upper critical dimension du , for example, appears
to be model dependent; the only conclusive statement one can make is that if the
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Gardner transition survives, a perturbative RG approach is unable to predict this fact,
requiring the use of non-perturbative RG tools. In any case, a solution to all these
problems does not seem to be forthcoming.

8.3 Proposals for Further Research

We conclude the chapter with some proposals for further research on the field of
glass physics. The reader will surely notice how they are all somewhat relative to the
yielding transition and related problems.

8.3.1 The Gardner Transition in Shear

Themost novel prediction produced by the present work is the existence of a Gardner
transition in shear strain. As we mentioned, this Gardner transition is related to the
onset of energy dissipation within the system for large enough strain.
A possible way to test this prediction is the following. First of all, glassy config-
urations equilibrated at low temperature must be prepared, using for example the
algorithms of [2] or [44]. Then a cycling shear strain protocol, like the one of [45],
must be applied, for example implementing it with an affine transformation on par-
ticle coordinates like in [46]. The strain should be applied in small steps in such a
way that the liquid is able to equilibrate at each step, i.e. one should always have
γ̇ < 1/τβ . This condition should be easy to satisfy since τβ is very low.
As soon as the amplitude of the cycle exceeds γG , the Gardner transition is met
and energy starts to be dissipated, producing a closed hysteresis curve with nonzero
surface like in [45]. The presence or not of a stress overshoot (which, if one believes
Fig. 5.8, appears only within the Gardner phase) can be used to discriminate the
Gardner transition from the yielding transition that happens at γY > γG .
The behavior of the μ(1) = 1/�E A shear modulus can also be studied easily: if
the prediction of Fig. 6.5 is true, the slope of the small elastic segments between
avalanches is supposed to increase as γY is approached. One could also measure the
Debye–Waller factor (� for γ < γG , �E A for γ > γG) in the whole glass phase in
order to get a double check both on the numerics and the theory, and verify that it
has a maximum for γ = γG as reported in Fig. 6.5.

8.3.2 State Following in AQS Protocols

The protocolswe reproduce in Fig. 5.8 are thermal protocolswherein a glass former is
“annealed” down to a density ϕ̂g and then strain is applied. However, most literature
on the subject considers Athermal Quasi Static protocols as detailed in Sect. 3.2.1.
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http://dx.doi.org/10.1007/978-3-319-60423-7_6
http://dx.doi.org/10.1007/978-3-319-60423-7_6
http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_3
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Since such a protocols are anyway quasi-static, they can be described within the
state following setting. There are two possible ways to do this: one can either choose
m = 0 in the expression (5.2) and then follow the state in γ (instantaneous quench
to T = 0 followed by strain), or one can keep m = 1, compress a state all the way
to ϕ j and then follow it in strain (slow annealing to T = 0 followed by strain). This
way, AQS stress-strain curves should be obtained. However, we must again remark
that the SF approach looks at equilibrium within the glassy metabasin, so the stress
strain curves will again be smooth curves corresponding to the average of many shear
histories like the ones in Fig. 3.9, and no stress drops (avalanches) will be observed.

8.3.3 Avalanches

It is however still possible to study avalanches.Within the fRSBapproach, avalanches
correspond to the rearrangement modes that take place when the system crosses over
from a microstate to another. In spin glasses, one has a similar phenomenon with
the hysteresis curve of magnetization M versus magnetic field H , that exhibits an
intermittent response (Barkhausen noise) much like the avalanche response seen in
AQS protocols (see for example [47] for a study in stressed athermal packings). The
statistics of thesemagnetization drops in theSKmodel has been extensively studied in
[48, 49]. Their probability distribution has been found to have a power-law behavior

ρ(�M) ∝ �M−τ ,

where the exponent τ has been computed in [48] (τ = 1). A similar power law behav-
ior is observed for avalanches in jammed packings [47] under stress control (γ vs.
σ) with an exponent τ � 1.46, so one would like to compute again the exponent in
the case of hard spheres.
The calculation of [48] can in principle be “translated” from spin glasses to hard
spheres. In [48] the starting point of the calculation is the computation of the cumu-
lants of the magnetization in different fields

〈mh1mh2 . . .mhp 〉c (8.1)

where • denotes an average over the quenched disorder. In the case of HSs, one
should consider the cumulants of the stress in different strains

〈σγ1σγ2 . . . σγp 〉c, (8.2)

where now the average over the “disorder” is the average over the configuration R
as defined in the (4.17). The first step for performing the calculation is certainly
understanding how the relevant quantities scale; in the case of the SK model it is
known that the magnetic field should scale like H = h√

N
[48] for a magnetization

http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_4
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drop of order
√
N to happen. In the case of strain, it may be that the relevant scaling

is γ � Nβiso , with βiso � −0.62 as reported in [50].
In any case, the study of [48, 49] is valid at zero temperature in the SK model and a
scaling solution of the fRSB equations is needed to perform the calculation, so the
computation in the case of spheres can be only made for the jammed, athermal case.
An eventual extension to the case of yielding beyond γY , wherein a scaling regime
is not even guaranteed to exists, does not seem like an easy task.

8.3.4 Yielding

The picture that emerges from this work for what concerns the yielding transition is
that of a spinodal point, akin the the onset transition found in decompression/heating
(Sect. 3.1.2). Having a spinodal point within a replica theory means having a zero
longitudinalmode in theHessianmatrix of the replica free energy s[α̂] as discussed in
Sect. 5.2.1; intuitively, one should consider the longitudinal mode of the outermost
block of the fRSB ansatz. A computation of the longitudinal mode of the fRSB
solution of state following should probably be performed in order to better understand
yielding.
The analogy between yielding and a spinodal point has led some authors to proposing
a picture of yielding as a phenomenon akin to an inverse glass transition by raising
the temperature (essentially, an onset transition), a point of view strongly criticized in
[51]. While it is true, at least for what concerns this work, that the yielding transition
is a spinodal point, there is a big difference between it and the onset point: the onset
transition always takes place at a temperature Ton > TMCT (see also Fig. 5.4), which
means that when the glass former is kicked out of the state, the only thing it finds
outside is a trivial FEL and an equilibrium measure dominated by the ergodic liquid.
This need not be true in the case of yielding, which can take place at temperatures
below TMCT ; this means that the system, when is kicked out the state because of
strain, may still have a rough FEL to move in and may even end up in a different
glassy state.
Understanding where the systems ends up after the spinodal point is an obvious
question whose answer is related to the description of the steady flow regime beyond
yielding. The bare-to-the-bone problem is essentially answering the question “Which
is the thermodynamic state anRFOT system,with T < Td , ends up inwhen the glassy
state it finds itself in is killed by an external perturbation? For example, is it another
glassy state, or a liquid-like state?”. Such a question could be in principle answered
by numerical simulations of simple RFOT models such as the PSM [52], using a
magnetic field to induce a spinodal point.

http://dx.doi.org/10.1007/978-3-319-60423-7_3
http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_5
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8.3.5 Non-linear Rheology

We have mentioned how the state following construction is unable to reproduce time
dependent shear protocols γ̇(t); the replica chain discussed in Sect. 4.3 may provide
a solution for this problem, at least if certain conditions are met. The idea is to
consider a chain of replicas, all of them at the same temperature Tg , and apply upon
each replica a shear strain in the following way

γa =
∑

c<a

δγ, (8.3)

in summary, we apply the strain progressively with a small increment δγ on each
replica, γa+1 − γa = δγ. Such a construction can in principle be implemented forMF
hard spheres using the expression (5.9) of the replicated entropy and implementing
shear through the (B.15). If one is able to successfully perform the infinite-bond
limit of the chain, a constitutive equation [16] for HS glasses prepared at ϕ̂g should
in principle be obtained. It is very interesting to notice that since the temperature is
constant, the chain will automatically yield a TTI dynamics when this construction
is performed, in agreement with the phenomenon of rejuvenation.
However, besides the obvious technical difficulties, there is a big conceptual limit:
pseudodynamics with the replica chain assumes quasi-equilibration, and as a result
of this all details of the fast relaxation in the β-regime are hopelessly lost. Only the
slow part of the dynamics is accounted for, as detailed in [53, 54].
It is therefore necessary to understand how much the fast part of relaxation matters
for the rheology of glassy materials, for example for the determination of the flow
curve. Intuitively, in the case of oscillatory protocols, the construction should be
meaningful as long as the frequency ω is chosen in such a way that

ω < 1/τβ,

which is not a particularly restrictive condition, unless the temperature is very low.
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Appendix A
The Infinite-d Solution of Hard Spheres

In this appendix we sketch the derivation of the replicated entropy (5.9) for hard
spheres in the d → ∞ limit. We only give the broad strokes, referring to [1] for
further details.

The starting point is a density functional theory [2] in the form [3]

S[ρ(x)] =
∫

dxρ(x)[1 − log ρ(x)] + 1

2

∫
dx d y ρ(x) f (x − y)ρ( y), (A.1)

where x ≡ (x1, . . . , xm) is a “molecular coordinate” that specifies the position of
a molecule made of m spheres, and f (x) is a replicated Mayer function [4]. The
replicated liquid of HSs is nothing but a molecular liquid wherein each molecule is
made up of m replicas1 of the same original sphere. The equilibrium density profile
ρ(x) is required to minimize the functional

δS
δρ(x)

= 0 =⇒ log ρ(x) =
∫

d y f (x − y)ρ( y) (A.2)

as usual. Normally, this density functional would be given by a diagrammatic expan-
sion [2] whose first term would be the second one in the (A.1), but for d → ∞, only
the first diagram survives [5], yielding the (A.1). The S is essentially the analogue,
for HSs and in the continuum, of the TAP free energy [6].

Passing from the (A.1) to the (5.9) amounts to nothing more than a change of
coordinates in the integrals, which is done by exploiting the inherent symmetries of
the problem. First of all, the liquids is homogeneous, so it is invariant by translations.
More specifically, if one defines

X ≡ 1

m

m∑
a=1

xa ua ≡ xa − X

1Of course we can choose m as we please.

© Springer International Publishing AG 2017
C. Rainone,Metastable Glassy States Under External Perturbations,
Springer Theses, DOI 10.1007/978-3-319-60423-7

169

http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_5


170 Appendix A: The Infinite-d Solution of Hard Spheres

which are the center of mass of a molecule and the displacement of atom a with
respect to it, then the density profile ρ(x) can only depend on the ua . We can exploit
this fact by changing coordinates

dx = dX du mdδ

(
m∑

a=1

ua

)
≡ dXDu, (A.3)

so that we can rewrite the (A.1) as

S[ρ(x)] = V
∫

Duρ(u)[1 − log ρ(u)] + V

2

∫
Du Dv ρ(u) f (u − v)ρ(v) (A.4)

where

f (u − v) ≡
∫

dX f (u − v + X). (A.5)

Secondly, the liquid is also isotropic, i.e. it is rotationally invariant. So, if one defines
new coordinates

qab ≡ ua · ub pab ≡ va · vb rab ≡ ua · vb, (A.6)

then the density profile can only depend on the matrix q̂ = qab. We can write

S[ρ(x)]
V

=
∫

dq̂ J (q̂)ρ(q̂)[1− log ρ(q̂)] + 1

2

∫
dq̂d p̂dr̂ K (q̂, p̂, r̂)ρ(q̂)ρ( p̂) f (q̂ + p̂ − r̂ − r̂ T ).

(A.7)
Wecan now see that the integration is not anymore onmd variables, but onm(m−1)/2
variables, all just by exploiting the symmetries of the problem. To proceed with the
calculation, one must then compute the Jacobians J and K . For the Jacobian J, for
example, one has

J (q̂) =
∫

Du
m∏

a≤b

δ(qab − ua · ub),

= md
∫

du δ

(
m∑

a=1

ua

)
m∏

a≤b

δ(qab − ua · ub),

= md
m∏

a=1

δ

(
m∑

b=1

qab

)∫
du1 . . . dum−1

m−1∏
a≤b

δ(qab − ua · ub).

(A.8)
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Luckily, the last integral has been already computed. It is nothing but the Jacobian that
one must compute to infer the probability distribution of aWishart matrix Q = U †U
whereinU is a M ×N matrix (whose probability distribution is known) with M = d
and N = m − 1; its value is just [7]

Cm,d exp

(
d − m

2
log det q̂m,m

)
. (A.9)

So the Jacobian is

J (q̂) = md
m∏

a=1

δ

(
m∑

b=1

qab

)
Cm,d exp

(
d − m

2
log det q̂m,m

)
, (A.10)

where Cm,d is a normalization constant (see [8, Appendix A] for its computation);
the calculation proceeds on similar lines for the Jacobian K . From this last equation
we can see that the integrand scales like ed , so for d → ∞ we can compute its value
using the saddle point-method [9] on the three matrices q̂ , p̂ and r̂ as discussed in
Sect. 5.1.2. At the saddle point one finds [1]

q̂ab = p̂ab r̂ab = 0. (A.11)

so that the entropy must be optimized only on the matrix q̂ . Afterwards, one defines

α̂ ≡ d

Dg
q̂, (A.12)

and after some more manipulations, one finally gets

S[ρ(x)]
N

= 1 − log ρ + d log(m) + (m − 1)d

2
log(2πeD2

g/d
2)

+ d

2
log det(α̂m,m) − d

2
ϕ̂g F

(
2α̂

)
,

which is the (5.9). We stress again the fact that this derivation is completely exact,
without any approximations.
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Appendix B
Computation of the Replicated Entropy
in the RS Ansatz

B.1 Entropic Term

We want to compute det α̂m+s,m+s , where we recall that α̂a,a is the matrix obtained
from α̂ by deleting the a-th row and column, i.e. it is the (a, a)-cofactor of α̂. Being
a Laplacian matrix, α̂ has a vanishing determinant. Also, the “Kirchhoff’s matrix
tree theorem” states that for Laplacian matrices, all the cofactors are equal, hence
det α̂a,a is independent of a. Therefore, if 1 is the identity in m + s dimensions, we
have

det(α̂+ε1) = det α̂+ε

m+s∑
a=1

det α̂a,a+O(ε2) ⇒ det α̂a,a = lim
ε→0

1

ε(m + s)
det(α̂+ε1) . (B.1)

We then define β̂(ε) = α̂ + ε1 and we note that

β̂(ε) =
(

A B
BT D

)
(B.2)

where A is a m × m matrix with components Aab = (δg + αg + ε)δab − αg , D is a
s × s matrix with Dab = (δ +α + ε)δab −α, and B is a m × s matrix with Bab = χ.

We can use the following general formula

det β̂(ε) = (det A) det(D − BT A−1B) , (B.3)

recalling that a m × m matrix Mab = M1δab + M2 has determinant det M =
Mm−1

1 (M1 + mM2) and its inverse is M−1
ab = (M−1)1δab + (M−1)2 with

(M−1)1 = 1

M1
,

(M−1)2 = − M2

M1(M1 + mM2)
.

(B.4)
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The matrix A−1 has this form, with

(A−1)1 = 1

αg + δg + ε
,

(A−1)2 = αg

(αg(1 − m) + δg + ε)(αg + δg + ε)
,

det A = (
δg + αg + ε

)m−1 (
δg + (1 − m)αg + ε

)
.

(B.5)

The matrix � = D − BT A−1B has the same form with

�1 = δ + ε + α ,

�2 = −α − χ2[m(A−1)1 + m2(A−1
2 )] ,

det� = (δ + α + ε)s−1{δ + α(1 − s) + ε − sχ2[m(A−1)1 + m2(A−1
2 )]} .

(B.6)

Using Eqs. (B.5), (B.6), (B.3) and (B.1), we obtain the final result

det α̂(m+s,m+s) = χ(mαg + sχ)m−1(sα + mχ)s−1 . (B.7)

By taking the logarithm and replacing the χ, α, αg with �g , � and � f using the
(5.12), we get the (5.13).

B.2 Interaction Term

Here we compute the interaction function F(2α̂). This function has been computed
in [1], but only for η = 0 and γ = 0. Here we need to generalize the calculation to
non-zero perturbations.

B.2.1 General Expression of the Replicated Mayer Function

We follow closely the derivation of [1] which has been generalized in [2] to the
presence of a strain. The replicated Mayer function is

f (ū) =
∫

dX

{
−1 +

m∏
a=1

θ(|X + ua| − Dg)

m+s∏
b=m+1

θ(|S(γ)(X + ub)| − D)

}

= −
∫

dX θ

(
max

a=1,m+s
{Da − |S(γa)(X + ua)|}

)
,

(B.8)

where we introduced Da = Dg(1 + ηa/d) with ηa = γa = 0 for 1 ≤ a ≤ m, and
ηa = η and γa = γ for m + 1 ≤ a ≤ m + s.

http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_5
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The ua are m + s vectors in d dimensions and define a hyper-plane in the d-
dimensional space. It is then reasonable to assume that this (m + s)-dimensional
plane is orthogonal to the strain directions μ = 1, 2 with probability going to 1 for
d → ∞ � m + s. Hence, the vector X can be decomposed in a two dimensional
vector {X1, X2} parallel to the strain plane, a (d − m − s − 2)-component vector
X⊥, orthogonal to the plane μ = 1, 2 and to the plane defined by ua , and a m + s-
component vector X‖ parallel to that plane. Defining �d as the d-dimensional solid
angle and recalling that Vd = �d/d, and following the same steps as in [1, Sect. 5],
we have, calling k = m + s

f (ū) = −
∫

dX1dX2 d
k X‖ dd−k−2X⊥

× θ
(
max
a

{D2
a − (X1 + γa X2)

2 − X2
2 − |X‖ + ua|2 − |X⊥|2}

)

= − �d−k−2

∫
dX1dX2 d

k X‖
∫ ∞

0
dx xd−k−3

× θ
(
max
a

{D2
a − x2 − (X1 + γa X2)

2 − X2
2 − |X‖ + ua|2}

)

= − �d−k−2

∫
dX1dX2 d

k X‖
∫ √

maxa{D2
a−(X1+γa X2)2−X2

2−|X‖+ua |2}

0
dx xd−k−3

= − Vd−k−2

∫
dX1dX2 d

k X‖

× �d−k−2

(
max
a

{D2
a − (X1 + γa X2)

2 − X2
2 − |X‖ + ua|2}

)
(B.9)

where we defined the function �p(x) = x p/2θ(x).
It has been shown in [1] that the region where f (ū) has a non-trivial dependence

on the ua is where ua ∼ 1/
√
d. Here we use Dg as the unit of length, hence we define

ua = xaDg/
√
d, X1,2 = ζ1,2Dg/

√
d and X‖ = εDg/

√
d. Using that limn→∞ �n(1+

y/n) = ey/2, and that for large d and finite k we have Vd−k/Vd ∼ dk/2/(2π)k/2, we
have

f (ū) = − Vd−k−2

Vd

Vd Dd
g

d(k+2)/2

∫
dζ1dζ2d

kε

× �d−k−2

(
1 − 1

d
min
a

{−2ηa + (ζ1 + γaζ2)
2 + ζ22 + |ε + xa|2}

)

∼ − VdD
d
g

∫
dζ1dζ2dkε

(2π)(k+2)/2
e− 1

2 mina{−2ηa+(ζ1+γaζ2)
2+ζ22+|ε+xa |2}

≡ − VdD
d
gF(x̄) ,

(B.10)

where the function F has been introduced following [1, 3].
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We can then follow the same steps as in [3, Sect.V C] and in [2] to obtain

F(x̄) =
∫

dζ1dζ2dkε

(2π)(k+2)/2
e− 1

2 mina {−2ηa+(ζ1+γaζ2)
2+ζ22+|ε+xa |2}

=
∫

dζ1dζ2dkε

(2π)(k+2)/2
lim
n→0

(
k∑

a=1

e− 1
2n [−2ηa+(ζ1+γaζ2)

2+ζ22+|ε+xa |2]
)n

= lim
n→0

∗∑∫
dζ1dζ2dkε

(2π)(k+2)/2
e−∑

a
na
2n [−2ηa+(ζ1+γaζ2)

2+ζ22+|ε+xa |2]

= lim
n→0

∗∑
e
∑k

a=1
na
n ηa− 1

2

∑k
a=1

na
n |xa |2+ 1

2

∑1,k
a,b

nanb
n2

xa ·xb
∫

dζ1dζ2

2π
e−∑

a
na
2n [(ζ1+γaζ2)

2+ζ22 ]

= lim
n→0

∗∑
e
∑k

a=1
na
n ηa− 1

4

∑1,k
a,b

nanb
n2

(xa−xb)2
∫

dζ√
2π

e
− ζ2

2

[
1+ 1

2

∑
ab

nanb
n2

(γa−γb)
2
]
.

(B.11)
where ∗∑

≡
∑

n1,...,nk ;∑k
a=1 na=n

n!
n1! . . . nk ! . (B.12)

We now introduce the matrix �̂ of mean square displacements between replicas

�ab = (xa − xb)
2 = d

D2
g

(ua − ub)
2 . (B.13)

We should now recall that the Mayer function is evaluated in ū − v̄, hence after
rescaling the function F is evaluated in x̄ − ȳ. For d → ∞, the interaction term is
dominated by a saddle point on ū and v̄, such that (xa −xb)2 = (ya − yb)2 = �ab and
xa · yb = 0 [1, 3, 4] hence (xa − ya − xb + yb)2 = (xa − xb)2 + (ya − yb)2 = 2�ab.
This is also why the function F is evaluated in 2α̂ in Eq. (5.9). The contribution of
the interaction term to the free energy (5.9) is [1]

1

2

N

V
f (ū− v̄) = −NVdDd

g

2V
F(x̄ − ȳ) = −2d−1ϕgF(2α̂) = −dϕ̂g

2
F(2α̂) . (B.14)

With an abuse of notation, we now call F(�̂) = F(2α̂).

http://dx.doi.org/10.1007/978-3-319-60423-7_5
http://dx.doi.org/10.1007/978-3-319-60423-7_5
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We therefore obtain at the saddle point

F(�̂) = lim
n→0

∗∑
e
∑k

a=1
na
n ηa− 1

2

∑1,k
a,b

nanb
n2

�ab

∫
dζ√
2π

e
− ζ2

2

[
1+ 1

2

∑
ab

nanb
n2

(γa−γb)
2
]

=
∫

dζ√
2π

e− ζ2

2

[
lim
n→0

∗∑
e
∑k

a=1
na
n ηa− 1

2

∑1,k
a,b

nanb
n2

(
�ab+ ζ2

2 (γa−γb)
2
)]

=
∫

dζ√
2π

e− ζ2

2 F0

(
�ab + ζ2

2
(γa − γb)

2

)
,

(B.15)

where F0(�̂) is the interaction function in absence of strain and is given by

F0(�̂) = lim
n→0

∑
n1,...,nk ;∑k

a=1 na=n

n!
n1! . . . nk !e

∑k
a=1

na
n ηa− 1

2

∑1,k
a,b

nanb
n2

�ab . (B.16)

B.2.2 Computation of the Interaction Term for a RS
Displacement Matrix

We now compute the function F0(�̂) for the replica structure encoded by the ma-
trix (5.11). Defining �m = ∑m

a=1
na
n and �s = ∑m+s

a=m+1
na
n , keeping in mind that

�m + �s = 1, and recalling that ηa = η for m + 1 ≤ a ≤ m + s and ηa = 0
otherwise, we can then write with some manipulations

F0(�̂) = lim
n→0

∗∑
e
−
(

�g

2 + � f

2

)
�m−( �

2 −η)�s+ � f

2 �2
m+ �g

2

∑m
a=1

n2a
n2

+ �
2

∑m+s
a=m+1

n2a
n2 . (B.17)

We now introduce Gaussian multipliers (Hubbard-Stratonovich transformation
[5]) to decouple the quadratic terms and introduce the notation Dλ = dλ√

2π
e−λ2/2.

Note that �g ≥ 0 and � ≥ 0. Under the assumption that 2� f ≥ 0 (to be discussed
later on), we get

F0(�̂) =
∫

DλaDμ lim
n→0

[
m∑

a=1

e
− 1

n

(
�g
2 + � f

2 +λa
√

�g+μ
√

� f
)

+
m+s∑

a=m+1

e
− 1

n

(
�
2 −η+λa

√
�

)]n

=
∫

DλaDμ e
−min

{
�g
2 + � f

2 +(mina≤m λa )
√

�g+μ
√

� f , �
2 −η+(mina>m λa )

√
�

}

(B.18)

http://dx.doi.org/10.1007/978-3-319-60423-7_5
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Now we use that for any function f (x),

∫
Dλa f

(
min
a≤m

λa

)
=m

∫
Dλ f (λ)

(∫ ∞

λ

Dλ′
)m−1

= −
∫

dλ f (λ)
d

dλ
�

(
− λ√

2

)m

≡
∫

Dm[λ] f (λ)

(B.19)

with

Dn[λ] = −dλ
d

dλ
�

(
− λ√

2

)n

. (B.20)

We therefore obtain

F0(�̂) =
∫

DmλDsλ
′ Dμ e

−min
{

�g

2 + � f

2 +λ
√

�g+μ
√

� f , �
2 −η+λ′√�.

}
(B.21)

The integral over μ can be done explicitly, and we obtain

K (λ,λ′) =
∫

Dμ e
−min

{
�g

2 + � f

2 +λ
√

�g+μ
√

� f , �
2 −η+λ′√�

}

= e− �
2 +η−√

�λ′
�

(
η + � f +�g−�

2 + √
�gλ − √

�λ′
√
2� f

)

+ e−�g/2−√
�gλ�

(
−η + � f −�g+�

2 − √
�gλ + √

�λ′
√
2� f

)
(B.22)

Now, integrating by parts, we can write

F0(�̂) =
∫

dλ
d

dλ

[
1 − �

(
− λ√

2

)m] ∫
dλ′ d

dλ′

[
1 − �

(
− λ′

√
2

)s]
K (λ,λ′)

=
∫

dλ
d

dλ

[
1 − �

(
− λ√

2

)m]{
K (λ,λ′ = ∞)

−
∫

dλ′
[
1 − �

(
− λ′

√
2

)s] ∂K

∂λ′ (λ,λ′)
}

=
∫

dλ
d

dλ

[
1 − �

(
− λ√

2

)m]
e−�g/2−√

�gλ

−
∫

dλ′
[
1 − �

(
− λ′

√
2

)s] ∫
dλ

d

dλ

[
1 − �

(
− λ√

2

)m]
∂K

∂λ′ (λ,λ′)
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=√
�g

∫
dλ

[
1 − �

(
− λ√

2

)m]
e−�g/2−√

�gλ

−
∫

dλ′
[
1 − �

(
− λ′

√
2

)s]{
∂K

∂λ′ (λ = ∞,λ′)

−
∫

dλ

[
1 − �

(
− λ√

2

)m]
∂2K

∂λ∂λ′ (λ,λ′)
}

=√
�g

∫
dλ

[
1 − �

(
− λ√

2

)m]
e−�g/2−√

�gλ

+ √
�

∫
dλ′

[
1 − �

(
− λ′

√
2

)s]
e−�/2+η−√

�λ′

+
∫

dλ dλ′
[
1 − �

(
− λ√

2

)m] [
1 − �

(
− λ′

√
2

)s] ∂2K

∂λ∂λ′ (λ,λ′) .

We also have

∂2K

∂λ∂λ′ (λ,λ′) = −√
�g� eη−�/2−√

�λ′ e
− 1

2� f

(
−η+ �−�g−� f

2 −√
�gλ+√

�λ′
)2

√
2π� f

. (B.23)

We remark that the function K does not depend explicitly on m and s, therefore the
derivativewith respect to s can be computed straightforwardly. Also, usingEq. (B.23)
one can write

F0(�̂) =√
�g

∫
dλ

[
1 − �

(
− λ√

2

)m]
e−�g/2−√

�gλ

+ √
�

∫
dλ′

[
1 − �

(
− λ′

√
2

)s]
e−�/2+η−√

�λ′

×
∫

dλ �

(
− λ√

2

)m √
�g

e
− 1

2� f

(
−η+ �−�g−� f

2 −√
�gλ+√

�λ′
)2

√
2π� f

.

(B.24)

We can also change to variables y = −�g/2 − √
�gλ and y′ = η − �/2 − √

�λ′,
and x = y′ − y. Then we have

F0(�
g,�,� f ) =

∫
dy ey

{
1 − �

(
y + �g/2√

2�g

)m

×
∫

dx �

(
x + y − η + �/2√

2�

)s e− 1
2� f (x−� f /2)

2

√
2π� f

}
.

(B.25)
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From Eq. (B.15), recalling that γa = γ for the s replicas and zero otherwise, we
have

F(�g,�,� f ) =
∫

dζ√
2π

e− ζ2

2 F0
(
�g,�,� f + ζ2γ2

)
. (B.26)

Which is the (5.14).
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Appendix C
Computation of the Replicon Mode

In this appendix we discuss in detail the stability of the replica symmetric ansatz
(5.11) for the calculation of the Franz-Parisi entropy.Wewant to compute the stability
matrix of the small fluctuations around the RS solution and from that extract the
replicon eigenvalue [1]. The calculation is very close to the one given in [1] and we
will use many of the results reported in that work.

C.1 The Structure of the Unstable Mode

The general stability analysis of the RS solution can be done on the following lines.
In principle, we have to take the general expression (5.9) and compute the Hessian
matrix obtained by varying at the second order the replicated entropy with respect
to the full matrix α̂. We can then compute the Hessian on the RS saddle point. The
task here is complicated by the fact that the entropy (5.9) is not symmetric under
permutation of all replicas. The symmetries are restricted to arbitrary perturbations
of the m replicas and the s replicas separately. Hence the structure of the Hessian
matrix is more complicated than the one studied in [1].

However, here we are mostly interested in studying the problemwhen them repli-
cas are at equilibrium in the liquid phase, hence m = 1, and in that case we already
know that the RS solution is stable in the sector of the m replicas [1]. Moreover, the
m reference replicas only select the glass state and do not evolve when the state is
followed, differently from the s replicas. Hence, on physical grounds, we expect that
replica symmetry will be broken in the sector of the s replicas and that the unstable
mode in that sector will have the form of a “replicon” mode similar to the one studied
in [1]. Based on this reasoning, we conjecture the following form for the unstable
mode:

δ�̂ =
[
δ�g(I mab − δab) δ�r I m,s

ab
δ�r I s,mab δ�R rab

]
, (C.1)
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where Î m is a m ×m matrix and Î m,s is a m × s matrix with all elements equal to 1,
and r̂ is a s × s “replicon” matrix such that

∑
ab rab = 0 [1, 2]. In other words, we

look for fluctuations around the RS matrix (5.11) where the matrix elements of the
m replicas�g and the matrix elements connecting them and s replicas�r are varied
uniformly, while in the s block we break replica symmetry following the replicon
mode.

Let us write the variation of the entropy (5.9) around the RS solution, along the
unstable mode (C.1). We have

δs = 1

2

∑
a �=b,c �=d

Mab;cdδ�abδ�cd + 1

6

∑
a �=b,c �=d,e �= f

Wab;cd;e f δ�abδ�cdδ�e f + · · · .

(C.2)
The mass matrix Mab;cd and the cubic termWab;cd;e f are derivatives of the entropy s
(which is replica symmetric) computed in a RS point, and therefore they must satisfy
certain symmetries which are simple extensions of the ones discussed in [1]. Let us
call (ab)m a pair of indices a �= b that both belong to the m block. Similarly (ab)s

belong to the s block, and (ab)r are such that one index belong to the m block and
the other to the s block. At the quadratic order, we obtain

δs = 1

2
(δ�g)2

∑
(ab)m ,(cd)m

Mab;cd + 1

2
(δ�r )2

∑
(ab)r ,(cd)r

Mab;cd

+ 1

2
δ�2

R

∑
(ab)s ,(cd)s

Mab;cdrabrcd + δ�gδ�r
∑

(ab)m ,(cd)r

Mab;cd

+ δ�gδ�R

∑
(ab)m ,(cd)s

Mab;cdrcd + δ�rδ�R

∑
(ab)r ,(cd)s

Mab;cdrcd .

(C.3)

It is easy to show that the cross-terms involving the replicon mode vanish. In fact,
the sum

∑
(ab)m Mab;cd must be a constant independent of the choice of indices

(cd)s , which are all equivalent due to replica symmetry in the s-block. Hence∑
(ab)m ,(cd)s Mab;cdrcd = const.

∑
(cd)s rcd = 0 because of the zero-sum property

of the matrix r̂ . The same property applies to the other cross-term. The quadratic
term has therefore the form

δs(2) = 1

2
A(δ�g)2+1

2
B(δ�r )2+Cδ�gδ�r+1

2
δ�2

R

∑
(ab)s ,(cd)s

Mab;cdrabrcd , (C.4)

and the stability analysis of the replicon mode in the s-block can be done indepen-
dently of the presence of the m replicas.

http://dx.doi.org/10.1007/978-3-319-60423-7_5
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A similar reasoning can be applied to the cubic terms. Let us write only the terms
that involve the replicon mode:

δs(3) = 1

6
δ�3

R

∑
(ab)s ,(cd)s ,(e f )s

Wab;cd;e f rabrcdre f

+ 1

2
δ�2

Rδ�g
∑

(ab)s ,(cd)s ,(e f )m

Wab;cd;e f rabrcd

+ 1

2
δ�2

Rδ�r
∑

(ab)s ,(cd)s ,(e f )r

Wab;cd;e f rabrcd

+ δ�Rδ�rδ�g
∑

(ab)s ,(cd)r ,(e f )m

Wab;cd;e f rab

+ 1

2
δ�R(δ�r )2

∑
(ab)s ,(cd)r ,(e f )r

Wab;cd;e f rab

+ 1

2
δ�R(δ�g)2

∑
(ab)s ,(cd)m ,(e f )m

Wab;cd;e f rab

+ terms without δ�R

Clearly, all terms that are linear in δ�R vanish. In fact, for example

∑
(ab)s ,(cd)r ,(e f )m

Wab;cd;e f rab =
∑
(ab)s

rab
∑

(cd)r ,(e f )m

Wab;cd;e f = const. ×
∑
(ab)s

rab = 0 ,

(C.5)
because once again

∑
(cd)r ,(e f )m Wab;cd;e f must be a constant independent of the

choice of (ab)s which are all equivalent thanks to replica symmetry in the s-block.
Collecting all non-vanishing terms that involve the replicon mode, we obtain

δs = 1

2
A(δ�g)2 + 1

2
B(δ�r )2 + Cδ�gδ�r + 1

2
δ�2

R

∑
(ab)s ,(cd)s

Mab;cdrabrcd

+ 1

6
δ�3

R

∑
(ab)s ,(cd)s ,(e f )s

Wab;cd;e f rabrcdre f + 1

2
δ�2

Rδ�g
∑

(ab)s ,(cd)s ,(e f )m
Wab;cd;e f rabrcd

+ 1

2
δ�2

Rδ�r
∑

(ab)s ,(cd)s ,(e f )r
Wab;cd;e f rabrcd .

(C.6)
This perturbative entropy must be optimized over δ�g, δ�r , δ�R , in order to check
if one can construct a perturbative saddle point solution with more RSBs [1]. The
above equation clearly shows that for a fixed δ�R , the optimization over δ�g, δ�r

gives δ�g ∼ δ�r ∼ δ�2
R . Hence we conclude that all the terms that involve δ�g
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and δ�r are at least of order δ�4
R and can be neglected in the linear stability analysis.

We finally obtain at the leading order

δs = 1

2
δ�2

R

∑
(ab)s ,(cd)s

Mab;cdrabrcd + 1

6
δ�3

R

∑
(ab)s ,(cd)s ,(e f )s

Wab;cd;e f rabrcdre f (C.7)

and all the couplings between the s-block and the m-block disappear. This shows
that the stability analysis of the replicon mode can be performed by restricting all
the derivatives to the s-block, both at the quadratic and cubic orders. The Gardner
transition corresponds to the appearance of a negativemode in the quadratic term for a
particular choice of thematrix rab that corresponds to a 1RSB structure in the s-block,
characterized by a Parisi parameter s1, as discussed in [2, Sect. VII]. The unstable
quadratic mode is stabilized by the cubic term leading to a fullRSB phase [2, 3]. Note
that, according to the analysis of [2, 3], in the “typical state” calculation done with
m replicas with m ∈ [0, 1] taken as a free parameter, the fullRSB phase can only be
stabilized if the parameterm1 > m, and this only happens at low enough temperature
or large enough densities, hence the fullRSB phase can only exist at sufficiently low
temperatures and high densities [2, 3]: unless these conditions are met, the replicon
instability only means that the replica calculation is generally unstable and only the
liquid phase exists.

However, the situation is crucially different here because the state following
construction requires s → 0. The perturbative analysis gives s1 = λ(s), where
λ(s) > 0 is the MCT parameter discussed in Sect. 6.2.2, hence one always has
s1 = λ(s) > s = 0 and the fullRSB phase exist at all temperatures and densi-
ties when the RS phase becomes unstable. This a big difference between the State
Following calculation and the real replica one.

Summarizing, we have shown that one can define the following stability matrix

Ms
a �=b;c �=d = M1

(
δacδbd + δadδbc

2

)
+ M2

(
δac + δad + δbc + δbd

4

)
+ M3 (C.8)

where the indices a, b, c, d run between m + 1 and m + s. The fact that the
replica structure of this stability matrix is the one defined in Eq. (5.36) is due to
replica symmetry under permutation of the s replicas as already discussed. When a
zero mode appears in this matrix, the RS solution becomes unstable and transform
continuously in a fullRSB one, signaling that the glass state sampled by the s replicas
undergoes a Gardner transition.

We now compute the replicon mode. We divide the problem of computing that
stability matrix in the part coming from the derivatives of the entropic term and the
part relative to the interaction term. We will first derive the stability matrix in the
case of absence of shear, and the generalize it to a shear-strain situation.

http://dx.doi.org/10.1007/978-3-319-60423-7_6
http://dx.doi.org/10.1007/978-3-319-60423-7_5
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C.2 Entropic Term

We want to compute the contribution of the entropic term to the stability matrix.
Note that under a variation of δαab, we have an identical variation of δαba = δαab,
and the diagonal terms vary by minus the same amount, δαaa = δαbb = −δαab to
maintain the Laplacian condition of α̂. Hence we have

δ

δαa<b
= δ

δαab
+ δ

δαba
− δ

δαaa
− δ

δαbb
. (C.9)

FromEq. (B.1), recalling that β̂(ε) = α̂+ε1, we have log det α̂m+s,m+s = log det β̂−
log(ε) − log(m + s) + O(ε), therefore, using (for symmetric matrices)

δ

δβab
log det β̂ = β−1

ab ,−→ δ2

δβabδβcd
log det β̂ = δβ−1

ab

δβcd
= −β−1

ac β−1
bd , (C.10)

we obtain

M (E)
ab;cd = δ2

δαa<bδαc<d
log det α̂m+s,m+s = lim

ε→0

δ2

δβa<bδβc<d
log det β̂

= lim
ε→0

[
−2β−1

ac β−1
bd − 2β−1

ad β−1
bc + 2β−1

ac β−1
bc + 2β−1

ad β−1
bd + 2β−1

ac β−1
ad + 2β−1

bc β−1
bd

−(β−1
ac )2 − (β−1

bc )2 − (β−1
ad )2 − (β−1

bd )2
]

.

(C.11)
Based on the discussion above, we are only interested in the matrix elements
corresponding to a, b, c, d belonging to the block of s replicas. The matrix β̂
has the form (B.2), and using the block-inversion formula, its inverse in the s
block is �−1 = (D − BA−1BT )−1. Hence, for a, b ∈ [m + 1,m + s] we have
β−1
ab = �−1

ab = (�−1)1δab + (�−1)2 where the coefficients are obtained from
Eqs. (B.6) and (B.4). In particular we have (�−1)1 = 1/(δ +α+ ε) = 1/(�/2+ ε).

Plugging this form of β−1
ab in Eq. (C.11), one can check that all terms involving

(�−1)2 disappear (as it should, because this term is divergent when ε → 0), and one
gets (recalling that a �= b and c �= d):

M (E)

ab;cd = M (E)
1

(
δacδbd + δadδbc

2

)
+ M (E)

2

(
δac + δad + δbc + δbd

4

)
+ M (E)

3

= − 16

�2

(
δacδbd + δadδbc

2

)
− 16

�2

(
δac + δad + δbc + δbd

4

)
.

(C.12)
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C.3 Interaction Term

We define the interaction part of the stability matrix in absence of shear as

M (I )
ab;cd = δ2F0[υ̂]

δυa<bδυc<d

∣∣∣∣
υ̂=2α̂RS

= M (I )
1

(
δacδbd + δadδbc

2

)
+ M (I )

2

(
δac + δad + δbc + δbd

4

)
+ M (I )

3

(C.13)

so that the expression for the matrix coefficients Mi of the full stability matrix is
given by

Mi = M (E)
i − 4ϕ̂M (I )

i . (C.14)

The calculation of the derivatives of the interaction term can be done on the same lines
and following the same tricks of [1]. Let us start by writing the general expression
for the derivatives using the representation (B.16) of the function F0. We have

M (I )
ab;cd = lim

n→0

∗∑
f (na, nb) f (nc, nd) exp

[
−

(
�g

2
+ � f

2

)
�m −

(
�

2
− η

)
�s

+ � f

2
�2

m + �g

2

m∑
a=1

n2a
n2

+ �

2

m+s∑
a=m+1

n2a
n2

]
,

(C.15)
where the function f is defined in [1, Eq. (45)]. As a variant of [1, Eq. (46)], we can
introduce the following notation

〈O〉 = lim
n→0

∗∑
O exp

[
−

(
�g

2
+ � f

2

)
�m −

(
�

2
− η

)
�s

+� f

2
�2

m + �g

2

m∑
a=1

n2a
n2

+ �

2

m+s∑
a=m+1

n2a
n2

]
.

(C.16)

The stabilitymatrix can thus be rewritten as [1, Eq. (47)] where the replica indices run
fromm+1 tom+s. Thenwehave to computemonomials of the form 〈na1 . . . nak/n

k〉,
which can be done in the following way
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〈na1 . . . nak
nk

〉 = lim
n→0

∗∑ na1 . . . nak
nk

∫ ∞

−∞
dμ√
2π

e−μ2/2
∫ ∞

−∞

(
m+s∏
a=1

dλa√
2π

e−λ2
a/2

)

× exp

[
−

(
�g

2
+ � f

2

)
�m −

(
�

2
− η

)
�s − μ

√
� f �m

−√
�

g
m∑

a=1

naλa

n
− √

�

m+s∑
a=m+1

naλa

n

]

= 1

�k/2

∫ ∞

−∞
Dμ

∫ ∞

−∞

(
m∏

a=1

Dλa

)∫ ∞

−∞

(
m+s∏

a=m+1

dλa√
2π

)

× ∂k

∂λa1 . . . ∂λak

e− 1
2

∑m+s
a=m+1 λ2

a

× e
−min

{
�g

2 + � f

2 +(mina≤m λa)
√

�g+μ
√

� f , �
2 −η+(mina>m λa)

√
�

}
.

(C.17)
If O is a function that depends only on the λa with a ∈ [m + 1,m + s], then we can
define

〈O〉 =
∫ ∞

−∞
Dμ

∫ ∞

−∞

(
m+s∏
a=1

Dλa

)

× O e
−min

{
�g
2 + � f

2 +(mina≤m λa )
√

�g+μ
√

� f , �
2 −η+(mina>m λa )

√
�

}

=
∫ ∞

−∞

(
m+s∏
a=1

Dλa

)
O K (min

a≤m
λa,min

a>m
λa) =

∫ ∞

−∞

(
m+s∏

a=m+1

Dλa

)
O G

(
min
a>m

λa

)
,

(C.18)
where

G(λ′) =
∫ ∞

−∞
Dmλ K (λ,λ′) . (C.19)

In this way we obtain a generalization of [1, Eq. (48)], in the form

〈na1 . . . nak/n
k〉 = 1

�k/2

〈
e

1
2

∑m+s
a=m+1 λ2

a
∂k

∂λa1 . . . ∂λak

e− 1
2

∑m+s
a=m+1 λ2

a

〉
. (C.20)

The interaction part of the stability matrix is then given by the same reasoning as
in [1, Eq. (50, 51, 53, 54, 56)] where the replica indices must be all shifted bym. The
only difference with respect to [1] is the definition of the measure used to take the
average over the variables λs. In fact instead of having [1, Eq. (52)] we have

〈O(λ)〉 =
∫ ∞

−∞
DλG(λ)O(λ) =

∫ ∞

−∞
DλD̄mλ′ K (λ′,λ) O(λ) . (C.21)

This completes the calculation of the stability matrix without shear.
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C.3.1 The Stability Matrix in Presence of Shear

The result of the previous section is valid when γ = 0. Here we generalize the
calculation to the case in which also the shear is present. The presence of a non
vanishing γ is detectable only in the interaction part of the replicated entropy. This
means that the expression of the entropic term does not change, and we need to
compute only the new interaction part of the stability matrix. This can be done using
the following line of reasoning. The interaction part of the stability matrix can be
written in presence of shear as

M (I,γ)

ab;cd = δ2

δυa<bδυc<d

∫
DζF0[�ab + ζ2

2
γ2�ab]

∣∣∣∣
υ̂=2α̂RS

(C.22)

where the matrix �ab = 1 if a belongs to the m-block and b to the s-block or
viceversa, and zero otherwise. Recalling that �ab = αaa + αbb − 2αab, we have
that the relation between �̂ and α̂ is linear, therefore a constant shift of �̂ induces a
constant shift in α̂, which does not affect the derivatives. We deduce that

M (I,γ)

ab;cd =
∫

Dζ M (I,γ=0)
ab;cd [�ab + ζ2

2
γ2�ab] =

∫
Dζ M (I,γ=0)

ab;cd [�g,�,� f + ζ2γ2] .

(C.23)
Because� f appears only in the kernel K , shifting� f amounts to nothing more than
a change in definition for the measure for the average of monomials of λ, which will
contain a modified kernel

K γ(λ,λ′) =
∫

DζK (λ,λ′; �g,�,� f + ζ2γ2)

=
∫

Dζ

[
e− �

2 +η−√
�λ′

�

(
η + � f +ζ2γ2+�g−�

2 + √
�gλ − √

�λ′
√
2(� f + ζ2γ2)

)

+e−�g/2−√
�gλ�

(
−η + � f +ζ2γ2−�g+�

2 − √
�gλ + √

�λ′
√
2(� f + ζ2γ2)

)]
,

(C.24)
and the functional expression of the interaction part of the stability matrix has the
same form of the γ = 0 case.
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Appendix D
Computation of the Replicated Entropy
in the fRSB Ansatz

We perform here the computation of the replicated entropy and the FP entropy for
the fRSB ansatz. As for the RS case, we take care separately of the entropic and
interaction terms.

D.1 Entropic Term

The entropic term for the replicated entropy has the following expression in terms
of the MSD matrix �̂ [1]:

2

d
sentr ≡ log det α̂m+s,m+s = log

[
− 2

(m + s)2

(∑
ab

(�̂)−1
ab

)
det(−�̂/2)

]
. (D.1)

Let us now compute separately the two terms

log det �̂
m+s∑
a,b=1

[
�̂−1

]
ab

. (D.2)

where � is a (m + s) × (m + s) block matrix

(
�̂g �̂r

(�̂r )T �̂∞RSB

)
, (D.3)

in which �̂g is a RS m × m matrix, �̂r is a m × s matrix whose elements are all
equal to �r , and �∞RSB is a generic hierarchical matrix. Let us start from the first
one that can be rewritten as

det �̂ =
(
det �̂g

)
det

(
�̂s − �̂r (�̂g)−1(�̂r )T

)
. (D.4)
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Using the fact that for a m × m replica symmetric matrix of the form qab = δab +
(1 − δab)q, the expression of the determinant is [5]

det q̂ = (1 − q)m−1[1 + (m − 1)q] (D.5)

then for �̂g we have that

det �̂g = lim
ε→0

(
�̂g + ε1m

)
= lim

ε→0
εm

(
1 − �g

ε

)m−1 [
1 + (m − 1)

�g

ε

]

= (1 − m)(−�g)m
(D.6)

where 1m is the m dimensional identity matrix. Moreover we have [2]

(�g)−1
ab = − 1

�g

(
δab + 1

1 − m

)
(D.7)

so that [
�̂r (�̂g)−1(�̂r )T

]
ab

= − (�r )2

�g

m

1 − m
(D.8)

This means that the matrix �̂ = �̂s − �̂r (�̂g)−1(�̂r )T will be parametrized within
the fullRSB ansatz by

�̂ → {�d ,�(x)} x ∈ [s, 1] (D.9)

where

�d ≡ (�r )2

�g

m

1 − m
,

�(x) ≡ �(x) + (�r )2

�g

m

1 − m
.

(D.10)

In this way we can use the result of [3, 4] to obtain

log det �̂ = s log(�d − 〈�〉) − s
∫ 1

s

dy

y2
log

(
�d − 〈�〉 − [�](y)

�d − 〈�〉
)

(D.11)

where

[�](x) = x�(x) −
∫ x

0
dy �(y) , 〈�〉 =

∫ 1

0
dx �(x) , (D.12)

and we are assuming �(x) = 0 ∀x < s. By inserting the fullRSB parametrization
for �̂ we get the computation of the first term of (D.2).

We now turn to the computation of the second term. We need to compute the
inverse of the matrix �̂. We thus consider a general matrix of the following form
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Ĝ =
(

q̂g q̂(1)
r

q̂(2)
r q̂

)
(D.13)

where the fullRSB structure is only inside the sub-block q̂ → {q̃, q(x)}, the entries
of the matrices q̂(1)

r and q̂(2)
r are all equal respectively to q(1)

r and q(2)
r , and the matrix

q̂g has an RS form. Again we assume that q(x) = 0 for x ∈ [0, s]. We want to solve
the inverse matrix problem, namely we want to find the matrix

Ĝ−1 =
(

p̂g p̂(1)
r

p̂(2)
r p̂

)
(D.14)

such that ĜĜ−1 = 1m+s . We assume the matrix G−1 to have the same general form
of the G and be likewise parametrized. Using this form of G−1, the equations for the
inverse are

qd pd + (m − 1)qg pg + sq(1)
r p(2)

r = 1 (D.15)

qd pg + qg pd + (m − 2)qg pg + sq(1)
r p(2)

r = 0 (D.16)

q(2)
r pd + (m − 1)pgq

(2)
r + p(2)

r (q̃ − 〈q〉) = 0 (D.17)

qd p
(1)
r + (m − 1)qg p

(1)
r + q(1)

r ( p̃ − 〈p〉) = 0 (D.18)

mq(2)
r p(1)

r + q̃ p̃ −
∫ 1

s
dxq(x)p(x) = 1 (D.19)

mq(2)
r p(1)

r − sp(x)q(x) + (q̃ − 〈q〉)p(x) + ( p̃ − 〈p〉)q(x)

−
∫ x

s
dy(q(y) − q(x))(p(y) − p(x)) = 0 (D.20)

These equations can be solved exactly. Let us focus first on the last two equations
and let us call A(x) the right hand side of Eq. (D.20). This equation holds for all x
in the interval [0, 1]. If we consider its derivative with respect to x we get

0 = Ȧ(x) = ( p̃ − 〈p〉)q̇(x) + (q̃ − 〈q〉) ṗ(x) − ṗ(x)[q](x) − q̇(x)[p](x) (D.21)

Let us now consider the following quantity:

B(x) = ( p̃ − 〈p〉 − [p](x)) (q̃ − 〈q〉 − [q](x)) (D.22)

It is simple to show that Ȧ(x) = −x Ḃ(x) so that we obtain

( p̃ − 〈p〉 − [p](x)) (q̃ − 〈q〉 − [q](x)) = ℵ (D.23)

where ℵ is a independent of x . Computing (D.23) in x = 1 and using Eq. (D.19)
we get

( p̃ − p(1)) (q̃ − q(1)) = ℵ (D.24)
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Moreover let us consider again Eq. (D.20) evaluated in x = 1. We get

1 = ( p̃ − p(1)) (q̃ − q(1)) (D.25)

so that we have ℵ = 1. Let us consider again the Eq. (D.23) evaluated in x = s.
We get

p̃ − 〈p〉 − sp(s) = 1

q̃ − 〈q〉 − sq(s)
, (D.26)

and using again Eq. (D.20) evaluated at x = s we get

0 = mp(1)
r q(2)

r − sp(s)q(s) + ( p̃ − 〈p〉)q(s) + (q̃ − 〈q〉)p(s) (D.27)

By solving the last two equations with respect to p̃ − 〈p〉 and p(s) we get

p̃ − 〈p〉 = − s

q̃ − 〈q〉
[
mp(1)

r q(2)
r

] + 1

q̃ − 〈q〉
p(s) = − 1

q̃ − 〈q〉
[
mp(1)

r q(2)
r + q(s)

q̃ − 〈q〉 − sq(s)

] (D.28)

from which we obtain

[p](x) = − [q](x)
(q̃ − 〈q〉)(q̃ − 〈q〉 − [q](x)) − smp(1)

r q(2)
r

q̃ − 〈q〉 . (D.29)

Taking the derivative with respect to x we get

ṗ(x) = −1

x

d

dx

[q](x)
(q̃ − 〈q〉)(q̃ − 〈q〉 − [q](x)) (D.30)

so that we have

p(x) = p(s) −
∫ x

s
dy

1

y

d

dy

[q](y)
(q̃ − 〈q〉)(q̃ − 〈q〉 − [q](y))

= − 1

q̃ − 〈q〉
[
mp(1)

r q(2)
r + 1

x

[q](x)
q̃ − 〈q〉 − [q](x) +

∫ x

s

dy

y2
[q](y)

q̃ − 〈q〉 − [q](y)
]

(D.31)
and finally, we get the solution for p̂

〈p〉 = −mp(1)
r q(2)

r

1 − s

q̃ − 〈q〉 − 1

q̃ − 〈q〉
∫ 1

s

dy

y2
[q](y)

q̃ − 〈q〉 − [q](y)
p̃ = 1

q̃ − 〈q〉
[
1 − mp(1)

r q(2)
r −

∫ 1

s

dy

y2
[q](y)

q̃ − 〈q〉 − [q](y)
]

.

(D.32)



Appendix D: Computation of the Replicated Entropy in the fRSB Ansatz 193

Let us now go back to the first four Eqs. (D.15)–(D.18). We can use Eq. (D.18)
together with (D.28) to solve for p(1)

r , and the remaining three Eqs. (D.15)–(D.17)
can be used to get pd , pg and p(2)

r :

p(1)
r = − q(1)

r

qd + (m − 1)qg

(
q̃ − 〈q〉 − smq(1)

r q(2)
r

qd + (m − 1)qg

)−1

p(2)
r = − q(2)

r

qd + (m − 1)qg

(
q̃ − 〈q〉 − smq(1)

r q(2)
r

qd + (m − 1)qg

)−1

pg = − 1

qd + (m − 1)qg

⎡
⎣ qg
qd − qg

− sq(1)
r q(2)

r

qd + (m − 1)qg

(
q̃ − 〈q〉 − smq(1)

r q(2)
r

qd + (m − 1)qg

)−1
⎤
⎦

pd = 1

qd − qg
− 1

qd + (m − 1)qg

×
⎡
⎣ qg
qd − qg

− sq(1)
r q(2)

r

qd + (m − 1)qg

(
q̃ − 〈q〉 − smq(1)

r q(2)
r

qd + (m − 1)qg

)−1
⎤
⎦

(D.33)
Note that the inverse of a symmetric matrix (q(1)

r = q(2)
r ) is symmetric as well. By

inserting the expression of p(1)
r inside p̃ and p(x) we end up with

p̃ = 1

q̃ − 〈q〉

[
1 + mq(2)

r

q(1)
r

qd + (m − 1)qg

(
q̃ − 〈q〉 − smq(1)

r q(2)
r

qd + (m − 1)qg

)−1

−
∫ 1

s

dy

y2
[q](y)

q̃ − 〈q〉 − [q](y)
]

p(x) = − 1

q̃ − 〈q〉

[
−mq(2)

r

q(1)
r

qd + (m − 1)qg

(
q̃ − 〈q〉 − smq(1)

r q(2)
r

qd + (m − 1)qg

)−1

+1

x

[q](x)
q̃ − 〈q〉 − [q](x) +

∫ x

s

dy

y2
[q](y)

q̃ − 〈q〉 − [q](y)
]

(D.34)
and this completes the calculation of the inverse. We can now collect all the results.
Firstly we have that

log det(�̂) = log det(�̂g) + log det(�̂) . (D.35)

Using (D.6), the first term of the previous equation is easy and we get

log det �̂g = log(1 − m) + m log(−�g). (D.36)

To evaluate the second term of the right hand side of Eq. (D.35), we use the expression
(D.11). We have
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�d − 〈�〉 = s
(�r )2

�g

m

1 − m
− 〈�〉 ,

[�] (y) = s
(�r )2

�g

m

1 − m
+ [�] (y),

(D.37)

so that

log det(�̂) = s log

(
s
(�r )2

�g

m

1 − m
− 〈�〉

)
− s

∫ 1

s

dy

y2
log

(
〈�〉 + [�](y)

〈�〉 − s (�r )2

�g
m

1−m

)
.

(D.38)
We now need to perform the sum of the elements of �̂−1. By parametrizing the
entries of �̂−1 with the same form of (D.14) we get

m+s∑
a,b=1

[
�̂−1

]
ab

= msp(1)
r + msp(2)

r + mpd + m(m − 1)pg + s( p̃ − 〈p〉). (D.39)

Now, using Eqs. (D.33) and (D.34) with

qd = 0,

qg = �g,

q(1)
r = q(2)

r = �r ,

q̃ = 0,

q(x) = �(x),

(D.40)

we get

msp(1)
r + msp(2)

r = 2ms

[
�r

(m − 1)�g

(
〈�〉 + s

(�r )2

�g

m

m − 1

)−1
]

, (D.41)

while

mpd = − m

�g − m

(m − 1)�g

⎡
⎣−1 + s(�r )2

(m − 1)�g

(
〈�〉 + s

(�r )2

�g
m

m − 1

)−1
⎤
⎦ , (D.42)

and

m(m − 1)pg = − m(m − 1)

(m − 1)�g

⎡
⎣−1 + s(�r )2

(m − 1)�g

(
〈�〉 + s

(�r )2

�g
m

m − 1

)−1
⎤
⎦ . (D.43)
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The last term is then given by

s( p̃ − 〈p〉) = − s

〈�〉 + s (�r )2

�g
m

m−1

. (D.44)

And summing everything we finally obtain, with some trivial algebra

m+s∑
a,b=1

[
�̂−1

]
ab

= m

(m − 1)�g − s

(
m�r

(m − 1)�g − 1

)2
(

〈�〉 + s
(�r )2

�g
m

m − 1

)−1

.

(D.45)
The final expression of the entropic term for the replicated entropy is thus given by

2

d
sentr = (1 − m − s) log 2 − 2 log(m + s) + log

[
m

(1 − m)�g

+s

(
m�r

(m − 1)�g − 1

)2
(

〈�〉 − s
(�r )2

�g
m

1 − m

)−1
⎤
⎦

+ log(1 − m) + m log(�g) + s log

(
〈�〉 − s

(�r )2

�g
m

1 − m

)

− s
∫ 1

s

dy

y2
log

⎛
⎝ 〈�〉 + [�](y)

〈�〉 − s (�r )2

�g
m

1−m

⎞
⎠

= (1 − m − s) log 2 − 2 log(m + s) + (m − 1) log�g

+ log[m 〈�〉 + 2ms�r + (1 − m)s�g] − s
∫ 1

s

dy

y2
log [〈�〉 + [�](y)]

(D.46)

This completes the calculation of the entropic term. One can easily check that this expression
reverts back to the result of AppendixB when a RS profile�(x) = � is chosen for the s block
[5]. Taking the linear order in s of this expression (with some caution, remember for example
that 〈�〉 ≡ ∫ 1

s dx �(x), so it depends on s as well), one gets the first row of the (6.5).

D.2 Interaction Term

We turn to the interaction term. The general expression we need to compute is the (B.16),
which we recall here

F0(�̂) = lim
n→0

∑
n1,...,nk ;∑k

a=1 na=n

n!
n1! . . . nk !e

∑k
a=1

na
n ηa− 1

2

∑1,k
a,b

nanb
n2

�ab
.

http://dx.doi.org/10.1007/978-3-319-60423-7_6
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By introducing Gaussian integrals, we can rewrite this term as [4]

F0(�̂) =
∫ ∞
−∞

dh eh
d

dh

⎧⎨
⎩exp

⎡
⎣−1

2

k∑
a,b=1

�ab
∂2

∂ha∂hb

⎤
⎦m+s∏

a=1

θ(ha)

⎫⎬
⎭

{ha=h−ηa}
.

(D.47)
where k = m + s and θ(x) is again the step Heaviside function [6]. Now we assume that the
s-sector of the displacement matrix has a generic kRSB structure. Thus we have, following
the derivation of [7] for the s block

F0(�̂) =
∫ ∞

−∞
dh eh

d

dh

⎧⎨
⎩exp

⎡
⎣−1

2

m∑
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− 1

2
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2
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⎭
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d
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2
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∂
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∂

∂ha

)(
m+s∑

b=m+1

∂
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)
− 1
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⎤
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a=1
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⎫⎬
⎭
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=
∫ ∞
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2
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(
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∂
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(
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∂
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)(
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∂
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⎤
⎦

(
m∏

a=1

�

(
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)⎫⎬
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{ha=h−ηa }

=
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dh eh
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{
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[
−1

2
�g

∂2

∂h′2 − �r
∂

∂h′
∂

∂h′′ − 1

2
�1

∂2
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]

×
(

�

(
h′√
2�g

))m

gs/s1 (s1, h
′′ − η)

}

h′=h′′=h
(D.48)

where the function g(x, h) is defined in terms of f (x, h) as

f (x, h) ≡ 1

x
log g(x, h) (D.49)

Note thatwe have defined�(s) = �1. At this pointwe canmanipulate the last expression to do
the final integrals by parts, giving an integral representation for the exponential of differential
operators. We consider the differential operator

Ô ≡ −1

2
�g

∂2

∂h′2 − �r
∂

∂h′
∂

∂h′′ − 1

2
�1

∂2

∂h′′2 (D.50)
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and we introduce also

Ĥ ≡ ∂

∂h′ + ∂

∂h′′ ; (D.51)

we have then

Ô = 1

2
� f

(
∂

∂h′′
)2

− 1

2
(� f + �1)Ĥ

∂

∂h′′ − �g

2
Ĥ

∂

∂h′ (D.52)

wherewe have defined� f = 2�r −�1−�g . By plugging this expression into the interaction
term we get

F0(�̂) =
∫ ∞
−∞

dh eh
d

dh

{
exp

[
1

2
� f

(
∂

∂h′′
)2

− 1

2
(� f + �1)Ĥ

∂

∂h′′ − �g

2
Ĥ

∂

∂h′

]

×
(

�

(
h′√
2�g

))m

gs/s1 (s1, h
′′ − η)

}

h′=h′′=h

.

(D.53)
Let us consider now a simple term of the form

∫ ∞
−∞

dh eh
d

dh

{
exp

[
AĤ

∂

∂h′′
]
f (h′, h′′)

}
h′=h′′=h

=
∫ ∞
−∞
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d
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∞∑
k=0

1

k! A
k Ĥk ∂k

∂h′′k f (h′, h′′)

∣∣∣∣∣∣
h′=h′′=h

.

(D.54)

By integrating by parts all the terms of the series expansion we get

∫ ∞
−∞

dh eh
d

dh

{
exp
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AĤ

∂

∂h′′
]
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}
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d
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1
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=
∫ ∞
−∞

dh eh
d
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{
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[
−A

∂

∂h′′
]
f (h′, h′′)

}
h′=h′′=h

=
∫ ∞
−∞

dh eh
d
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{
f (h′, h − A)

}
h′=h′′=h .

(D.55)

Using this result we finally get for the interaction term

F0(�̂) =
∫ ∞

−∞
dh eh

d

dh

{
exp

[
−1

2
(� f + �1)Ĥ

∂

∂h′′ − �g

2
Ĥ

∂
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]

×
(

�

(
h′√
2�g

))m

γ� f � gs/s1 (s1, h
′′ − η)

}

h′=h′′=h

=
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=
∫ ∞

−∞
dh eh

d

dh

{(
�

(
h + �g/2√

2�g

))m

γ� f � gs/s1 (s1, h − η + (� f + �1)/2)

}

=
∫ ∞

−∞
dh eh

{
1 −

(
�

(
h + �g/2√

2�g

))m

γ� f � gs/s1 (s1, h − η + (� f + �1)/2)

}
.

(D.56)

where we have used the definitions [4]

e
a
2

∂2

∂h2 f (h) ≡ γa � f (h) γa � f (h) ≡
∫ ∞
−∞

dz√
2πa

e− z2
2a f (h − z).. (D.57)

We now have to take again the the linear order in s. We just have to expand the function g in
the following way

g(s1, h)s/s1 � 1 + s

s1
log g(s1, h) + O(s2).

and then we have to send s → 0. In doing so k → ∞ as well, and both �(x) and f (x, h)

become continuous functions of x . The function f can then be shown [7, 8] to obey the
Eq. (6.9)

∂ f

∂x
= 1

2

d�(x)

dx

[
∂2 f

∂h2
+ x

(
∂ f

∂h

)2
]

,

with the boundary condition (6.10)

f (1, h) = log�

(
h√

2�(1)

)
,

and we get the interaction part of the (6.5).

D.3 Simplifications for m = 1

Before proceeding with the variational equations for �̂ we want to show that in the case in
which the master replicas are taken at equilibrium, namely when m = 1, the form of the
state-followed entropy can be much simplified. Indeed in this case �g disappears from the
equations.

http://dx.doi.org/10.1007/978-3-319-60423-7_6
http://dx.doi.org/10.1007/978-3-319-60423-7_6
http://dx.doi.org/10.1007/978-3-319-60423-7_6
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It is quite easy to see this in the case for the entropic term of Eq. (6.5) by remembering that
� f ≡ 2�r − �(s) − �g . It remains to verify that �g disappears also from the interaction
term. For m = 1 its general form is given by

F(�̂) =
∫ ∞

−∞
Dζ

∫ ∞

−∞
dy ey

⎧⎨
⎩1 − �

(
y + �g/2√

2�g

)∫ ∞

−∞
dx σ(x + y)

e
− 1

2�γ (ζ) (x−�γ (ζ)/2)
2

√
2π�γ(ζ)

⎫⎬
⎭ ,

where in our case the function σ(x) is given by

σ(x) = gs/s1
(
s1, x − η + �1

2

)
. (D.58)

This general form is valid for every replica-symmetry-breaking ansatz (the only difference is
in the specific form of σ(x)). We then express the � function with its integral representation

�

(
h + �g/2√

2�g

)
=

∫ ∞
−∞

dλ√
2π�g

e−λ2/(2�g)θ

(
h + �g

2
− λ

)
(D.59)

to get

F(�̂) =
∫ ∞
−∞

Dζ

∫ ∞
−∞

dxdydλ ey
e−

(λ+�g/2)2

2�g

√
2π�g

e
− (x−�γ (ζ)/2)2

2�γ (ζ)√
2π�γ(ζ)

[1 − θ(y − λ)σ(x + y)] .

(D.60)
We now change integration variables in the following way:

⎧⎪⎨
⎪⎩
u = y + x

v = λ + x

w = x .

(D.61)

Note that the Jacobian of this change of coordinates is one so that we get

F(�̂) =
∫ ∞
−∞

Dζ

∫ ∞
−∞

dudvdw eu−w e−
(v−w+�g/2)2

2�g

√
2π�g

e
− (w−�γ (ζ)/2)2

2�γ (ζ)√
2π�γ(ζ)

[1 − θ(u − v)σ(u)].
(D.62)

The integral onw can be easily done analytically, since it is just a convolution of twoGaussians.
We obtain

F(�̂) =
∫ ∞
−∞

Dζ

∫ ∞
−∞

dudv eu
e
− (v+�g/2+�γ (ζ)/2)2

2(�g+�γ (ζ))√
2π(�g + �γ(ζ))

[1 − θ(u − v)σ(u)] . (D.63)

Remembering that �g + � f = 2�r − �1, we get that �g disappears from the expression.
Using again (D.59) we get finally

http://dx.doi.org/10.1007/978-3-319-60423-7_6
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F(�̂) =
∫ ∞
−∞

Dζ

∫ ∞
−∞

du eu
{
1 − �

(
u + (2�r + γ2ζ2 − �1)/2√

2(2�r + γ2ζ2 − �1)

)
σ(u)

}
. (D.64)

This expression is much simpler than the corresponding one with m �= 1. We conclude by
recalling that with a 1RSB ansatz the function σ would be given by

σ1RSB(u) = �

(
u − η + �1/2√

2�1

)s
, (D.65)

and for the more general fullRSB case it is given by (D.58).
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Appendix E
Variational Equations in the fRSB Ansatz

In this appendix we derive the variational equations for the optimization of the (6.5) with
respect to �(x). Two routes are possible: one can start from the entropy of the m + s replicas
for a finite number of RSBs k, take the derivatives with respect to the �i , and then take the
k → ∞ limit at the end to get the fRSB equations; alternatively, one can start directly from
the (6.5), and obtain the equations by taking functional derivatives with respect to �(x). Here
we use only this last procedure, introduced by Sommers and Dupont in [1], and refer to [2]
for the computation for finite k.

E.1 Lagrange Multipliers

In the formalism of [1], one introduces Lagrange multipliers in the expression of the entropy
in order to enforce the Parisi equation (6.9) and its boundary condition (6.10). These Lagrange
multipliers are called P(x, h) and P(1, h); we rewrite the relevant part of the free energy of
the followed system (6.5) (we omit constant terms), adding the Lagrange multipliers

S∞ = 1

2
log

(
π 〈�〉
d2

)
− 1

2

∫ 1

0

dx

x2
log

(
G(x)

〈�〉
)

+ 1

2

m� f + �g

m 〈�〉
+ ϕ̂g

2

∫ ∞
−∞

dh eh�

(
h + �g/2√

2�g

)m

×
∫

dx ′ f (0, x ′ + h − η + �(0)/2)
e
− 1

2� f

(
x ′−� f /2

)2
√
2π� f

+ ϕ̂g

2

∫ 1

0
dx

∫ ∞
−∞

dh P(x, h)

{
ḟ (x, h) − Ġ(x)

2x

[
f ′′(x, h) + x f ′(x, h)2

]}

− ϕ̂g

2

∫ ∞
−∞

dh P(1, h)

{
f (1, h) − log�

(
h√

2G(1)

)}
,

(E.1)
where we have defined the function
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G(x) ≡ x�(x) +
∫ 1

x
dy �(y). (E.2)

We start from the equation for � f . We easily get

0 = 1

〈�〉 + ϕ̂g

2

∫
dh eh�

(
h + �g/2√

2�g

)m

×
∫

dx f ′(0, x + h − η + �(0)/2)

(
x + � f /2

� f

)
e
− 1

2� f

(
x−� f /2

)2
√
2π� f

.

(E.3)

Wemust now take the functional derivatives of theS∞. Taking the oneswith respect to P(x, h)

and f (x, h) we get

ḟ (x, h) = Ġ(x)

2x

[
f ′′(x, h) + x f ′(x, h)2

]
, (E.4)

Ṗ(x, h) = − Ġ(x)

2x

[
P ′′(x, h) − 2x(P(x, h) f ′(x, h))′

]
, (E.5)

where we have used the apex to denote the derivative with respect to h, and the dot for the
one with respect to x . We must now differentiate with respect to f (0, h), which is contained
in the third line and in the boundary term of the fourth line (we can make it explicit with an
integration by parts over x). We get the initial condition for the function P(x, h):

P(0, h) = eh+η−�(0)/2
∫ ∞
−∞

dx
e
− (x+� f /2)2

2� f√
2π� f

�

(
h − x + η − �(0)/2 + �g/2√

2�g

)m

.

(E.6)
for generic m. For m = 1 we can use the results of Sect.D.3 to get

P(0, h) = eh+η−�(0)/2�

(
h + η + �r − �(0)√

2(2�r − �(0))

)
, (E.7)

while in presence of shear we get, using the (5.14).

P(0, h) = eh+η−�(0)/2
∫ ∞
−∞

dζ
e−

ζ2

2√
2π

�

(
h + η + �r + ζ2γ2/2 − �(0)√

2(2�r + ζ2γ2 − �(0))

)
(E.8)
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We now differentiate with respect to G(x), x �= 0, x �= 1. We must integrate by parts the
term proportional to Ġ(x) in the fourth line, and use Eqs. (E.4) and (E.5). We must not forget
that the second line depends as well on G(x) through �(0), as [3]

�(x) = G(x)

x
−

∫ 1

x
dz

G(z)

z2
. (E.9)

Surprisingly, the terms which contain 〈�〉 give no contribution since δ〈�〉
δG(x) = 0, as can be

checked using the (E.9):

δ 〈�〉
δG(x)

= δ

δG(x)

(∫ 1

0
dy

G(y)

y
−

∫ 1

0
dy

∫ 1

y

dz

z2
G(z)

)

= δ

δG(x)

(∫ 1

0
dy

G(y)

y
−

∫ 1

0
dy

∫ 1

0

dz

z2
G(z)θ(z − y)

)

= 1

x
− 1

x2

∫ 1

0
dy θ(x − y) = 1

x
− 1

x2
x = 0.

(E.10)

So we get

1

G(x)
= − ϕ̂g

2

∫ ∞
−∞

dh P(x, h) f ′′(x, h) − ϕ̂g

2

∫ ∞
−∞

dh eh�

(
h + �g/2√

2�g

)m

×
∫

dy f ′(0, y + h − η + �(0)/2)
e
− 1

2� f

(
y−� f /2

)2
√
2π� f

= − ϕ̂g

2

∫ ∞
−∞

dh P(x, h) f ′′(x, h) − ϕ̂g

2

∫ ∞
−∞

dh P(0, h) f ′(0, h),

(E.11)

where we have made a translational change of coordinates over h and used the definition
of P(0, h) in the second term. Finally, we focus on the boundary term at x = 0 and we
differentiate with respect to G(0) = 〈�〉. We recall for the reader that

δG(x)

δG(y)
= δ(x − y). (E.12)

Let us start with the entropic term. We get

δSentr∞
δG(0)

=
[

1

G(0)
+

∫ 1

0

dx

x2
1

G(0)
− m� f + �g

mG(0)2

]
δ(0)

=
[

lim
x→0+

1

xG(0)
− m� f + �g

mG(0)2

]
δ(0).

(E.13)

We stress the fact that the boundary term for x = 0 in the integral part of the entropic term
does not depend on G(0), so it gives no contribution.
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For what concerns the interaction term, wemust first differentiate the third line with respect
to G(0) through its dependence on �(0). We have, using the (E.9):

δ�(0)

δG(0)
= lim

x→0+
1

x
δ(0). (E.14)

then we have to take the boundary term for x = 0 in the fourth line, again integrating it by
parts. The final result is, for the interaction term

δSint∞
δG(0)

=
[

lim
x→0+

ϕ̂g

2x

∫ ∞
−∞

dh P(0, h) f ′(0, h) + lim
x→0+

ϕ̂g

2x

∫ ∞
−∞

dh P(0, h) f ′′(0, h)

+ ϕ̂g

2

∫ ∞
−∞

dh P(0, h) f ′(0, h)2
]

δ(0).

(E.15)
We can now put the two terms together. Using the (E.3) (or equivalently, the (E.11) for x = 0)
to eliminate the term in 1

G(0) , we finally get

m� f + �g

m 〈�〉2 = ϕ̂g

2

∫ ∞
−∞

dhP(0, h) f ′(0, h)2. (E.16)

This completes the derivation of the variational equations. We now have an equation to fix
every variable.

In summary, the equations we have to use are

ḟ (x, h) = Ġ(x)

2x

[
f ′′(x, h) + x f ′(x, h)2

]
, (E.17)

Ṗ(x, h) = − Ġ(x)

2x

[
P ′′(x, h) − 2x(P(x, h) f ′(x, h))′

]
(E.18)

1

G(x)
= − ϕ̂g

2

∫ ∞
−∞

dh [P(x, h) f ′′(x, h) + P(0, h) f ′(0, h)], (E.19)

m� f + �g

m 〈�〉2 = ϕ̂g

2

∫ ∞
−∞

dh P(0, h) f ′(0, h)2. (E.20)

The procedure to solve them is as follows:

• One starts from a guess for � f and G(x).
• Then we solve the (E.4) and (E.5), with the boundary conditions (6.10) and (E.6).
• Then we compute the new G(x) and � f using the (E.16) and (E.11).
• Repeat until the procedure converges.

E.2 A Different Equation for G(x)

We show here that the equation for G(x) can be recast in the form:

http://dx.doi.org/10.1007/978-3-319-60423-7_6
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1

G(x)
= 1

〈�〉 + ϕ̂g

2

∫ ∞
−∞

dh

[
x P(x, h) f ′(x, h)2 −

∫ x

0
dz P(z, h) f ′(z, h)2

]
,

1

G(x)
= 1

〈�〉 + xκ(x) −
∫ x

0
dy κ(y),

(E.21)

where we have defined

κ(x) ≡ ϕ̂g

2

∫ ∞
−∞

dh P(x, h)
(
f ′(x, h)

)2
, (E.22)

which is more convenient for the purpose of the scaling analysis near jamming, Sect.E.3. As
in [3], we show that Eqs. (E.11) and (E.21) are the same for x = 0 and then we show that their
derivatives of every order with respect to x coincide. For x = 0 it is trivial as the integral term
in the (E.21) is zero, so that

− ϕ̂g

2

∫ ∞
−∞

dh [P(0, h) f ′′(0, h) + P(0, h) f ′(0, h)] = 1

〈�〉 , (E.23)

which is just the (E.19) for x = 0. For what concerns the derivative, we proceed and use the
same notation as in [3]. From the (E.11) we get

Ṗ f ′′ + P ḟ ′′ ∼ Ṗ f ′′ + P ′′ ḟ ∼ Ġ

2x
[(2x(P f ′)′ − P ′′) f ′′ + P ′′( f ′′ + x f ′2)] ∼ Ġ P( f ′′)2,

(E.24)
and from the (E.21) we get

x Ṗ f ′2 + 2x P f ′ ḟ ′ ∼ Ġ

2
[(2x(P f ′)′ − P ′′) f ′2 + 2P f ′( f ′′′ + 2x f ′ f ′′)] ∼ −Ġ P( f ′′)2.

(E.25)
Where a ∼ b =⇒ ∫

dh a(x, h) = ∫
dh b(x, h) and we have used the equations for f and P .

We have thus proven that Eqs. (E.21) and (E.11) are equivalent.

E.3 Scaling Analysis Near Jamming

We show now that once the glass state is followed in compression up to the jamming point, the
solution on the fullRSB equations develops a scaling regime characterized by a set of critical
exponents that coincide with the ones computed in [3]. The proof will be given by showing that
the scaling equations close to jamming, and the asymptotic behavior of their initial conditions
are the same as those that had been obtained in [3]; the values of the critical exponents follow
directly from these requirements.
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E.3.1 Scaling form of the Equations

On approaching the jamming point, the mean square displacement �E A ≡ �(1) of the fRSB
microstates at the bottom of the hierarchy goes to zero. We thus define the jamming limit as
�(1) ≡ �E A → 0. Moreover we expect that � f stays finite.

We want to show that the fullRSB equations develop a scaling regime. At jamming the

pressure diverges as 1/p ∝ �
1/κ
E A [3, 4] and we want to determine κ. We thereby define the

following scaling variables and functions (we omit the subscript E A to lighten the notation):

y ≡ �
− 1

κ
E Ax, (E.26)

f̂ (y, h) ≡ �
1
κ f (�

1
κ y, h), (E.27)

γ(y) ≡ G(�
1
κ y)

�
1
κ

, (E.28)

P̂(y, h) ≡ e−h−ηP(�
1
κ y, h) . (E.29)

The initial conditions for the new functions f̂ and P̂ are therefore

P̂(0, h) = e−�(0)/2
∫ ∞
−∞

dx
e
− (x+� f )2

2� f√
2π� f

�

(
h − x + η − �(0)/2 + �g/2√

2�g

)m

,

f̂ (1/�
1
κ , h) = �

1
κ log�

⎛
⎝ h√

2�
1
κ γ(1/�

1
κ )

⎞
⎠ ,

and the relation between �(y) and γ(y) becomes

�(y) = γ(y)

y
−

∫ 1/�
1
κ

y

dz

z2
γ(z). (E.30)

pagebreak
Using the same reasoning, the variational equations for the scaling functions are:

∂ f̂ (y, h)

∂y
= γ̇(y)

2y

[
∂2 f̂ (y, h)

∂h2
+ y

(
∂ f̂ (y, h)

∂h

)2]
,

∂ P̂(y, h)

∂y
= −e−h γ̇(y)

2y

[
∂2[eh P̂(y, h)]

∂h2
− 2y

∂

∂h

(
eh P̂(y, h)

∂ f̂ (y, h)

∂h

)]

1

γ(y)
= 1

〈�〉 + yκ(y) −
∫ y

0
dz κ(z)

m� f + �g

m 〈�〉2 = κ(0)

κ(y) = ϕ̂geη

2

∫ ∞
−∞

dh eh P̂(y, h) f̂ ′(y, h)2,
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which are very close to those obtained in [3]. The entropy, for its part, is rephrased in

S = 1

2
log

(
π 〈�〉
d2

)
+ 1

2
log(�

1
κ ) + 1

�
1
κ

⎡
⎣−1

2

∫ 1/�
1
κ

0

dy

y2
log

(
γ(y)

〈�〉
)

+1

2

m� f + �g

m 〈�〉 + ϕ̂geη

2

∫ ∞
−∞

dh eh P̂(0, h) f̂ (0, h)

]
,

(E.31)

where now 〈�〉 is defined as

〈�〉 =
∫ 1/�

1
κ

0
dy �(y). (E.32)

We expect that the entropy diverges as log 1/p � log�
1
κ . This means that the term between

square parentheses on the right hand side of (E.32) must vanish. This gives a condition for the
jamming point ηJ as in the RS case (Sect. 5.3.1).

E.3.2 Asymptotes and Scaling of ̂P and ̂f

In order to show that the scaling equations (E.31) have the same critical exponents as the
ones derived in [3] we need to show that the asymptotic behavior for h → ±∞ of the initial
conditions for f̂ and P̂ coincides with the one of [3]. We start from the f̂ . Since the boundary
condition for f̂ is the same as the one in [3], it trivially follows that also the asymptotic
behavior is the same. Indeed we have

f̂ (1/�
1
κ , h → −∞) = −h2/(2γ(1/�

1
κ )), (E.33)

f̂ (1/�
1
κ , h → ∞) = 0, (E.34)

and by inserting this asymptotes in the equation for f̂ we get,

f̂ (y, h → −∞) = −h2/(2γ(y)), (E.35)

f̂ (y, h → ∞) = 0, (E.36)

as in [3]. Conversely, the boundary condition for P̂ is not the same as in [3]. However one can
easily see that the asymptotic behavior is still the same. In fact, we have for y = 0

P̂(0, h → −∞) = A(0)eB(0)h−D(0)h2 (E.37)

P̂(0, h → ∞) = e−�(0)/2, (E.38)

thanks to the fact that our P̂(0, h) is the convolution of a � function with a normalized
Gaussian. We can again plug these asymptotes (and those of f̂ ) in the equation for P̂ in
(E.31), to get

http://dx.doi.org/10.1007/978-3-319-60423-7_5
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P̂(0, h → −∞) = A(y)eB(y)h−D(y)h2 (E.39)

P̂(0, h → ∞) = e−�(y)/2, (E.40)

where the equations for A, B and D are the same as in [3].
We now look for a solution for P̂ and f̂ at large y. We conjecture that �(y) � �∞y−κ

for large y, which through the (E.30) implies that γ(y) � γ∞y−c with c = κ − 1 and
γ∞ = κ

κ−1�∞. We can then solve the equations for A, B and D for large y, and we get for
h → −∞

P̂(y, h) = A∞yceB∞hc yc−D∞h2y2c = yc p0(hy
c). (E.41)

We can thus conjecture for P̂ the same exact scaling that was used in [3]:

P̂(y, h) �

⎧⎪⎨
⎪⎩
yc p0(hy

c) h � −y−c

ya p1(hy
b) |h| � y−b

p2(h) h � y−b .

(E.42)

This scaling in turn requires that the function p1(z) must obey the boundary conditions

p1(z) =
{
zθ z → ∞
z−α z → −∞ (E.43)

where θ ≡ c−a
b−c and α = a

b , as in [3, 5].

For what concerns the f̂ , we define as in [3] a function

ĵ(y, h) ≡ f̂ (y, h) + h2θ(−h)

2γ(y)
. (E.44)

Using the equation for f̂ it is easy to see that, for all y

ĵ(y, h → −∞) =
∫ ∞
y

du

2u

γ̇(u)

γ(u)
, (E.45)

ĵ(y, h → ∞) = 0. (E.46)

For large y, again γ(y) � γ∞y−c, which means ĵ(y, h → −∞) � −c/(2y). So we can
again conjecture the scaling form

ĵ(y, h) = − c

2y
J (hyb/

√
γ∞). (E.47)

with the boundary conditions J (−∞) = 1 and J (∞) = 0.
Now that we have the boundary conditions for the functions J and p1, all that we have to

do is to plug them into the equations for P̂ and f̂ in order to get the equations for p1 and J :
since the scaling equations are the same as in [3] we get the same equations for p1 and J .
The final step to show that the critical exponents here are the same as in [3] is to show that the
marginal stability equation for the replicon mode is the same [3]. In order to achieve this we
can start from Eq. (E.21) and consider the quantity
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κ(x) = ϕ̂g

2

∫ ∞
−∞

dh P(x, h)
(
f ′(x, h)

)2
. (E.48)

By taking the derivative with respect to x and assuming that we are in a fullRSB region such
that x > 0 and Ġ(x) �= 0 we get

1 = ϕ̂g

2

∫ ∞
−∞

dh P(x, h)
(
G(x) f ′′(x, h)

)2 (E.49)

This equation is the same as the starting point that has been used in [3] in order to close
the system of equations for the critical exponents at jamming, and it can be shown [3] that
implies both the marginality of the replicon mode everywhere in the fRSB phase [6], and the
isostaticity of jammed packings [3].

We conclude that the scaling behavior of the solution of (E.31) is the same as the one found
in [3], thus proving that the critical exponents a, b and c and κ, θ and γ are the same as in [3].
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